City Research Online

Numerical investigation of heavy fuel oil droplet breakup enhancement with water emulsions

Fostiropoulos, S., Strotos, G., Nikolopoulos, N. & Gavaises, M. ORCID: 0000-0003-0874-8534 (2020). Numerical investigation of heavy fuel oil droplet breakup enhancement with water emulsions. Fuel, 278, article number 118381. doi: 10.1016/j.fuel.2020.118381

Abstract

The heating and explosive boiling leading to fragmentation of immiscible heavy fuel oil-water droplets, termed as W/HFO emulsions, is predicted numerically by solving the incompressible Navier-Stokes and energy equations alongside with a set of three VoF transport equations separating the interface of co-existing HFO, water liquid and water vapour fluid phases. Model predictions suggest that explosive boiling of the water inside the surrounding HFO, ought to their different boiling points, accelerates droplet breakup; this process is termed as either puffing or micro-explosion. In contrast to past studies which predefine the presence of vapor bubbles inside the water droplet, this is predicted here with a phenomenological model based on local temperature and superheat degree. Following their formation, the growth rate of the bubbles is computed with OCASIMAT phase-change algorithm. Moreover, the fuel droplet is simultaneously subjected to convective air flow which further contributes to its deformation. As a result, the performed simulations quantify the relative time scales of the aerodynamic-induced and the emulsion-induced breakup mechanisms. The conditions examined refer to a highly viscous emulsified heavy fuel oil droplet in a gas phase having fixed temperature and pressure equal to 1000 K and 30 bar, respectively. Initially, a benchmark case demonstrates the detailed mechanisms taking place, concluding that droplet fragmentation occurs only at a part of the fuel-air interface, resembling characteristics similar to puffing. Next, a parametric study with Weber number (Oh=0.9,We<200) shows that puffing process can speed up to 10 times the breakup of the droplet relative to aerodynamic breakup.

Publication Type: Article
Additional Information: © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Publisher Keywords: CFD, Fuel oil-water emulsion, Breakup, VoF, Vapor nucleation, Boiling
Subjects: T Technology > TJ Mechanical engineering and machinery
T Technology > TL Motor vehicles. Aeronautics. Astronautics
Departments: School of Science & Technology > Engineering
SWORD Depositor:
[thumbnail of CRO_version_Fuel.pdf]
Preview
Text - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (2MB) | Preview

Export

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login