City Research Online

Aerofoil wake-induced transition characteristics on a flat-plate boundary layer

Veerasamy, D., Atkin, C.J. and Ponnusami, S. A. ORCID: 0000-0002-2143-8971 (2021). Aerofoil wake-induced transition characteristics on a flat-plate boundary layer. Journal of Fluid Mechanics, 920, A29. doi: 10.1017/jfm.2021.452

Abstract

This paper presents an experimental investigation of the characteristics of laminar– turbulent transition occurring on a flat-plate boundary layer due to the interaction with a non-impinging aerofoil wake. Previous studies have tended to focus on transition induced by free-stream turbulence or by the wake of a circular cylinder, both of which exhibit different forcing characteristics to the present experimental arrangement. A tripped NACA 0014 aerofoil was used to generate a fully turbulent wake, upstream of and at various heights above a laminar, flat-plate boundary layer, in the UK National Low-turbulence Wind Tunnel at City, University of London. Hot-wire measurements conducted in the pre-transitional region reveal the wall-normal and spanwise structure of the disturbances induced within the boundary layer and the rate of growth of disturbance energy. Disturbance profiles generally (but not uniquely) follow the non-modal distribution obtained from transient growth theory, but energy growth rates are mainly exponential rather than algebraic. Energy spectra demonstrate the existence of mixed transitional features (both natural and bypass) in the boundary layer. Two-point spatial correlations reveal the presence of a streaky structure, but with spanwise scale much larger than the boundary layer thickness, in contrast to the trends seen in free-stream turbulence-induced bypass transition and cylinder wake-induced transition. The gap between aerofoil and flat plate affects both the evolution of non-modal disturbance profile and the appearance of the streaky structure; the spacing of the streaks was also found to scale with the vertical gap between aerofoil and flat plate. Overall, the combination of observed characteristics is quite different from the forced transition mechanisms previously reported in the literature.

Publication Type: Article
Additional Information: This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Publisher Keywords: boundary layer receptivity, wakes, transition to turbulence
Subjects: Q Science > QC Physics
T Technology > TL Motor vehicles. Aeronautics. Astronautics
Departments: School of Mathematics, Computer Science & Engineering > Engineering > Mechanical Engineering & Aeronautics
Date available in CRO: 14 Jun 2021 12:47
Date deposited: 14 June 2021
Date of acceptance: 19 May 2021
Date of first online publication: 11 June 2021
URI: https://openaccess.city.ac.uk/id/eprint/26290
[img]
Preview
Text - Published Version
Available under License Creative Commons: Attribution International Public License 4.0.

Download (5MB) | Preview

Export

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login