When does "diversity" in development reduce common failures? Insights from probabilistic modelling
Salako, K. ORCID: 0000-0003-0394-7833 & Strigini, L. (2013). When does "diversity" in development reduce common failures? Insights from probabilistic modelling. IEEE Transactions on Dependable and Secure Computing, 11(2), pp. 193-206. doi: 10.1109/tdsc.2013.32
Abstract
Fault tolerance via diverse redundancy, with multiple "versions" of a system in a redundant configuration, is an attractive defence against design faults. To reduce the probability of common failures, development and procurement practices pursue "diversity" between the ways the different versions are developed. But difficult questions remain open about which practices are more effective to this aim. About these questions, probabilistic models have helped by exposing fallacies in "common sense" judgements. However, most make very restrictive assumptions. They model well scenarios in which diverse versions are developed in rigorous isolation from each other: a condition that many think desirable, but is unlikely in practice. We extend these models to cover non-independent development processes for diverse versions. This gives us a rigorous way of framing claims and open questions about how best to pursue diversity, and about the effects - negative and positive - of commonalities between developments, from specification corrections to the choice of test cases. We obtain three theorems that, under specific scenarios, identify preferences between alternative ways of seeking diversity. We also discuss non-intuitive issues, including how expected system reliability may be improved by creating intentional "negative" dependencies between the developments of different versions.
Publication Type: | Article |
---|---|
Additional Information: | © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. |
Publisher Keywords: | Common-mode failure, Software Diversity, Fault tolerance, Multiversion software, Probability of failure on demand, Reliability |
Subjects: | Q Science > QA Mathematics > QA76 Computer software |
Departments: | School of Science & Technology > Computer Science > Software Reliability |
SWORD Depositor: |
Download (240kB) | Preview
Export
Downloads
Downloads per month over past year