City Research Online

A state-of-the-art review of progressive collapse research and guidelines for single-layer lattice shell structures

Kolakkattil, R., Tsavdaridis, K. D. ORCID: 0000-0001-8349-3979 & Sanjeev, A. J. (2023). A state-of-the-art review of progressive collapse research and guidelines for single-layer lattice shell structures. Structures, 56, article number 104945. doi: 10.1016/j.istruc.2023.104945

Abstract

The importance of progressive collapse analysis of structures has increased significantly due to various structural collapses. Single-layer lattice shell structures are susceptible to progressive collapse, as the failure or instability of a localised region can result in a global collapse due to their lightness and wide span. The geometry of these structures plays a crucial role in the load resistance, and any damage that alters the overall geometry can initiate different instabilities, which may also result in progressive collapse. Therefore, the possibility of progressive collapse is high among these lighter structural forms. However, research on the progressive collapse of single-layer lattice shell structures is limited compared to frame structures, highlighting the need for further investigation. Therefore, this manuscript aims to provide a comprehensive review of research conducted on the progressive collapse of single-layer lattice shell structures, focusing on experimental, numerical, and theoretical investigations. Earlier studies have explored the propagation of local instabilities leading to overall failure. More recent research has primarily focused on two approaches: (1) alternate path analysis, which examines the structure’s response after removing a member, and (2) substructure analysis, which aims to identify collapse-preventive mechanisms. Based on these analyses, various methods to enhance progressive collapse resistance have been discussed, including specific local resistance, alternate load paths, compartmentalisation, and tie forces. This review also highlights the limitations present in the current literature and suggests future research directions, which helps to develop design guidelines that can effectively increase the progressive collapse resistance of single-layer lattice shell structures, making them more reliable for various structural applications.

Publication Type: Article
Additional Information: © 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
Publisher Keywords: Single-layer lattice shells, Progressive collapse, Alternate path method, Specific local resistance, Structural robustness, Kiewitt dome, Cylindrical shell, Snap-through buckling, Review
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
T Technology > TH Building construction
Departments: School of Science & Technology > Engineering
SWORD Depositor:
[thumbnail of Kolakkattil_et_al_Structures_2023.pdf] Text - Accepted Version
This document is not freely accessible until 8 August 2024 due to copyright restrictions.
Available under License Creative Commons Attribution Non-commercial No Derivatives.

To request a copy, please use the button below.

Request a copy

Export

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login