City Research Online

PLPose: An efficient framework for detecting power lines via key points-based pose estimation

Jaffari, R., Hashmani, M.A., Reyes-Aldasoro, C. C. ORCID: 0000-0002-9466-2018 , Junejo, A. Z., Taib, H. & Abdullah, M. N B. (2023). PLPose: An efficient framework for detecting power lines via key points-based pose estimation. Journal of King Saud University - Computer and Information Sciences, 35(7), article number 101615. doi: 10.1016/j.jksuci.2023.101615


The inspection and maintenance of electrical power lines (PL) via unmanned aerial vehicles (UAV) require fast and accurate PL detection to ensure smooth and secure electrical operations. However, the detection of PLs from aerial images is a highly challenging task due to the thin nature of PLs and the inherent noisy image backgrounds. Traditional line and edge detection methods do not detect the PLs accurately due to the cluttered backgrounds while the more recent deep learning (DL) CNNs are also not feasible for efficient PL detection due to the coarse bounding boxes and the computationally expensive pixel-based segmentations. Hence, in this study we propose PLPose, a novel framework for detecting the PLs via key points-based pose estimation technique and adapt the MobileNetV3 CNN for this task (kMobileNetV3), by adding a simple key point detection head to predict the PL key points. We also introduce a novel data-centric architecture (kMobileNetV3 + UDP), by adding the unbiased data processing (UDP) module to our kMobileNetV3, for faster and more accurate key point-based PL detection along with novel methods for data annotations and performance evaluation. Evaluations of PLPose on three benchmark PL datasets (PLDM, PLDU and the Mendeley Powerline Dataset) reveal that our proposed framework outperforms the state-of-the-art top-down pose estimation networks (HRNet-w32, HRNet-w32 + UDP and Resnet-50 Simple Baselines) in processing speed (∼29 FPS) and model size (5.23 M) for PL detection. Thus, the comprehensive experimental results demonstrate the effectiveness of our proposed framework. Our code is available from Github (

Publication Type: Article
Additional Information: ©2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (
Publisher Keywords: Power lines, Cable detection, Unmanned aerial vehicles, Key point pose estimation, Deep learning
Subjects: T Technology > T Technology (General)
T Technology > TK Electrical engineering. Electronics Nuclear engineering
Departments: School of Science & Technology > Computer Science > giCentre
SWORD Depositor:
[thumbnail of 1-s2.0-S1319157823001696-main.pdf]
Text - Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (3MB) | Preview


Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email


Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login