City Research Online

Development of an explainable artificial intelligence model for Asian vascular wound images

Lo, Z. J., Mak, M. H. W., Liang, S. , Chan, Y. M., Goh, C. C., Lai, T., Tan, A., Thng, P., Rodriguez, J., Weyde, T. ORCID: 0000-0001-8028-9905 & Smit, S. (2023). Development of an explainable artificial intelligence model for Asian vascular wound images. International Wound Journal, doi: 10.1111/iwj.14565

Abstract

Chronic wounds contribute to significant healthcare and economic burden worldwide. Wound assessment remains challenging given its complex and dynamic nature. The use of artificial intelligence (AI) and machine learning methods in wound analysis is promising. Explainable modelling can help its integration and acceptance in healthcare systems. We aim to develop an explainable AI model for analysing vascular wound images among an Asian population. Two thousand nine hundred and fifty-seven wound images from a vascular wound image registry from a tertiary institution in Singapore were utilized. The dataset was split into training, validation and test sets. Wound images were classified into four types (neuroischaemic ulcer [NIU], surgical site infections [SSI], venous leg ulcers [VLU], pressure ulcer [PU]), measured with automatic estimation of width, length and depth and segmented into 18 wound and peri-wound features. Data pre-processing was performed using oversampling and augmentation techniques. Convolutional and deep learning models were utilized for model development. The model was evaluated with accuracy, F1 score and receiver operating characteristic (ROC) curves. Explainability methods were used to interpret AI decision reasoning. A web browser application was developed to demonstrate results of the wound AI model with explainability. After development, the model was tested on additional 15 476 unlabelled images to evaluate effectiveness. After the development on the training and validation dataset, the model performance on unseen labelled images in the test set achieved an AUROC of 0.99 for wound classification with mean accuracy of 95.9%. For wound measurements, the model achieved AUROC of 0.97 with mean accuracy of 85.0% for depth classification, and AUROC of 0.92 with mean accuracy of 87.1% for width and length determination. For wound segmentation, an AUROC of 0.95 and mean accuracy of 87.8% was achieved. Testing on unlabelled images, the model confidence score for wound classification was 82.8% with an explainability score of 60.6%. Confidence score was 87.6% for depth classification with 68.0% explainability score, while width and length measurement obtained 93.0% accuracy score with 76.6% explainability. Confidence score for wound segmentation was 83.9%, while explainability was 72.1%. Using explainable AI models, we have developed an algorithm and application for analysis of vascular wound images from an Asian population with accuracy and explainability. With further development, it can be utilized as a clinical decision support system and integrated into existing healthcare electronic systems.

Publication Type: Article
Additional Information: © 2023 The Authors. International Wound Journal published by Medicalhelplines.com Inc and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Publisher Keywords: artificial intelligence, computer-assisted image analysis, machine learning, vascular wounds, wound imaging
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
R Medicine > RC Internal medicine
Departments: School of Science & Technology > Computer Science
[thumbnail of International Wound Journal - 2023 - Lo - Development of an explainable artificial intelligence model for Asian vascular.pdf]
Preview
Text - Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (3MB) | Preview

Export

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login