City Research Online

Items where City Author is "Weyde, T. E."

Up a level
Export as [feed] RSS 2.0 [feed] RSS
Group by: Type | No Grouping
Number of items: 63.

Article

Confalonieri, R., Weyde, T. ORCID: 0000-0001-8028-9905, Besold, T. R. & Moscoso del Prado Martín, F. (2021). Using ontologies to enhance human understandability of global post-hoc explanations of black-box models. Artificial Intelligence, 296, 103471. doi: 10.1016/j.artint.2021.103471

Guizzo, E., Weyde, T. ORCID: 0000-0001-8028-9905 & Tarroni, G. ORCID: 0000-0002-0341-6138 (2021). Anti-transfer learning for task invariance in convolutional neural networks for speech processing. Neural Networks, 142, pp. 238-251. doi: 10.1016/j.neunet.2021.05.012

Tran, S. N., Garcez, A., Weyde, T. ORCID: 0000-0001-8028-9905 , Yin, J., Zhang, Q. ORCID: 0000-0003-0982-2986 & Karunanithi, M. (2020). Sequence Classification Restricted Boltzmann Machines With Gated Units. IEEE Transactions on Neural Networks and Learning Systems, 31(11), pp. 4806-4815. doi: 10.1109/TNNLS.2019.2958103

Mahdi, A., Weyde, T. ORCID: 0000-0001-8028-9905 & Al-Jumeily, D. (2020). Comparing unsupervised layers in neural networks for financial time series prediction. Proceedings - International Conference on Developments in eSystems Engineering, DeSE, pp. 134-139. doi: 10.1109/DeSE.2019.00034

Jansson, A., Bittner, R. M., Ewert, S. & Weyde, T. ORCID: 0000-0001-8028-9905 (2019). Joint singing voice separation and F0 estimation with deep U-net architectures. 2019 27th European Signal Processing Conference (EUSIPCO), 2019-S, doi: 10.23919/EUSIPCO.2019.8902550

Staines, T., Weyde, T. ORCID: 0000-0001-8028-9905 & Galkin, O. (2019). Monaural speech separation with deep learning using phase modelling and capsule networks. 2019 27th European Signal Processing Conference (EUSIPCO), 2019-S, doi: 10.23919/EUSIPCO.2019.8902655

Weyde, T. ORCID: 0000-0001-8028-9905 & Kopparti, R. M. (2019). Modelling Identity Rules with Neural Networks. Journal of Applied Logics, 6(4), pp. 745-769.

Kopparti, R. M. & Weyde, T. ORCID: 0000-0001-8028-9905 (2019). Modeling Interval Relations for Neural Language models. Machine Learning for Music Discovery, ICML, Long Beach, June 9-15, 2019, 97,

Barbieri, F., Guizzo, E., Lucchesi, F. , Maffei, G., del Prado Martin, F. M. & Weyde, T. ORCID: 0000-0001-8028-9905 (2019). Towards a Multimodal Time-Based Empathy Prediction System. 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), pp. 716-720. doi: 10.1109/FG.2019.8756532

Mahdi, A., Weyde, T. ORCID: 0000-0001-8028-9905 & Al-Jumeily, D. (2018). The FL-SMIA Network: A Novel Architecture for Time Series Prediction. 2017 10TH International Conference on Developments in eSystems Engingeering (DeSE), doi: 10.1109/DeSE.2017.42

Velarde, G., Cancino Chacon, C., Meredith, D. , Weyde, T. ORCID: 0000-0001-8028-9905 & Grachten, M. (2018). Convolution-based classification of audio and symbolic representations of music. Journal of New Music Research, 47(3), pp. 191-205. doi: 10.1080/09298215.2018.1458885

Elmsley (né Lambert), A., Weyde, T. & Armstrong, N. (2017). Generating Time: Rhythmic Perception, Prediction and Production with Recurrent Neural Networks. Journal of Creative Music Systems, 1(2), doi: 10.5920/JCMS.2017.04

Abdallah, S., Benetos, E., Gold, N. , Hargreaves, S., Weyde, T. & Wolff, D. (2017). The digital music lab: A big data infrastructure for digital musicology. Journal on Computing and Cultural Heritage, 10(1), 2.. doi: 10.1145/2983918

Tran, S. N., Cherla, S., Garcez, A. & Weyde, T. (2017). The Recurrent Temporal Discriminative Restricted Boltzmann Machines. CoRR,

Sarkar, S., Weyde, T., Garcez, A. , Slabaugh, G. G., Dragicevic, S. & Percy, C. (2016). Accuracy and interpretability trade-offs in machine learning applied to safer gambling. CEUR Workshop Proceedings, 1773,

Cherla, S., Tran, S.N., Weyde, T. & Garcez, A. (2016). Generalising the Discriminative Restricted Boltzmann Machine.

Percy, C., Garcez, A., Dragicevic, S. , França, M. V. M., Slabaugh, G. G. & Weyde, T. (2016). The Need for Knowledge Extraction: Understanding Harmful Gambling Behavior with Neural Networks. Frontiers in Artificial Intelligence and Applications, 285, pp. 974-981. doi: 10.3233/978-1-61499-672-9-974

de Valk, R. & Weyde, T. (2015). Bringing 'Musicque into the tableture': machine-learning models for polyphonic transcription of 16th-century lute tablature. Early Music, 43(4), pp. 563-576. doi: 10.1093/em/cau102

Tidhar, D., Dixon, S., Benetos, E. & Weyde, T. (2014). The temperament police. Early Music, 42(4), pp. 579-590. doi: 10.1093/em/cau101

Benetos, E., Ewert, S. & Weyde, T. (2014). Automatic transcription of pitched and unpitched sounds from polyphonic music. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3107-3111. doi: 10.1109/ICASSP.2014.6854172

Sigtia, S., Benetos, E., Boulanger-Lewandowski, N. , Weyde, T., Garcez, A. & Dixon, S. (2014). A Hybrid Recurrent Neural Network For Music Transcription. CoRR, 14(11), p. 1623.

Velarde, G., Weyde, T. & Meredith, D. (2013). An approach to melodic segmentation and classification based on filtering with the Haar wavelet. Journal of New Music Research, 42(4), pp. 325-345. doi: 10.1080/09298215.2013.841713

Wolff, D. & Weyde, T. (2013). Learning music similarity from relative user ratings. Information Retrieval, 17(2), pp. 109-136. doi: 10.1007/s10791-013-9229-0

Weyde, T., Slabaugh, G. G., Fontaine, G. & Bederna, C. (2013). Predicting aquaplaning performance from tyre profile images with machine learning. Lecture Notes in Computer Science, 7950 L, pp. 133-142. doi: 10.1007/978-3-642-39094-4_16

Ng, K.-C., Weyde, T., Larkin, O. , Neubarth, K., Koerselman, T. & Ong, B. (2007). 3d augmented mirror: a multimodal interface for string instrument learning and teaching with gesture support. ICMI '07 Proceedings of the 9th international conference on Multimodal interfaces, pp. 339-345. doi: 10.1145/1322192.1322252

Book Section

Lambert, A., Weyde, T. & Armstrong, N. (2015). Perceiving and predicting expressive rhythm with recurrent neural networks. In: Proceedings of the 12th International Conference in Sound and Music Computing. . Maynooth, Ireland: SMC15.

Lambert, A., Weyde, T. & Armstrong, N. (2014). Beyond the Beat: Towards Metre, Rhythm and Melody Modelling with Hybrid Oscillator Networks. (2014 ed.) In: Georgaki, A. & Kouroupetroglou, G. (Eds.), Music Technology Meets Philosophy: from Digital Echos to Virtual Ethos. Proceedings of ICMC, SMC. (pp. 485-490). San Francisco: International Computer Music Association.

Wolff, D. & Weyde, T. (2013). Combining Sources of Description for Approximating Music Similarity Ratings. In: Detyniecki, M., García-Serrano, A., Nürnberger, A. & Stober, S. (Eds.), Adaptive Multimedia Retrieval. Large-Scale Multimedia Retrieval and Evaluation. Lecture Notes in Computer Science, 7836. (pp. 114-124). Springer. doi: 10.1007/978-3-642-37425-8_9

Cherla, S., Weyde, T., Garcez, A. & Pearce, M. (2013). A Distributed Model For Multiple-Viewpoint Melodic Prediction. In: de Souza Britto Jr, A., Gouyon, F. & Dixon, S. (Eds.), Proceedings of the 14th International Society for Music Information Retrieval Conference. (pp. 15-20). International Society for Music Information Retrieval.

Conference or Workshop Item

Lopedoto, E. & Weyde, T. ORCID: 0000-0001-8028-9905 (2020). ReLEx: Regularisation for Linear Extrapolation in Neural Networks with Rectified Linear Units. Paper presented at the AI-2020 Fortieth SGAI International Conference on Artificial Intelligence, 8-9 Dec 2020; 15-17 Dec 2020, Virtual. doi: 10.1007/978-3-030-63799-6_13

Confalonieri, R., Weyde, T. ORCID: 0000-0001-8028-9905, Besold, T. R. & Moscoso del Prado Martín, F. (2020). Trepan Reloaded: A Knowledge-driven Approach to Explaining Artificial Neural Networks. In: 24th European Conference on Artificial Intelligence (ECAI 2020). Frontiers in Artificial Intelligence and Applications, 325. (pp. 2457-2464). IOS Press. ISBN 978-1-64368-100-9 doi: 10.3233/FAIA200378

Perez-Lapillo, J., Galkin, O. & Weyde, T. ORCID: 0000-0001-8028-9905 (2020). Improving Singing Voice Separation with the Wave-U-Net Using Minimum Hyperspherical Energy. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), ISSN 2379-190X doi: 10.1109/icassp40776.2020.9053424

Guizzo, E., Weyde, T. ORCID: 0000-0001-8028-9905 & Leveson, J. B. (2020). Multi-Time-Scale Convolution for Emotion Recognition from Speech Audio Signals. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), ISSN 2379-190X doi: 10.1109/icassp40776.2020.9053727

Laibacher, T., Weyde, T. ORCID: 0000-0001-8028-9905 & Jalali, S. (2020). M2U-net: Effective and efficient retinal vessel segmentation for real-world applications. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 115-124. ISSN 2160-7508 doi: 10.1109/CVPRW.2019.00020

Philps, D., Garcez, A. & Weyde, T. ORCID: 0000-0001-8028-9905 (2019). Making Good on LSTMs' Unfulfilled Promise. Paper presented at the NeurIPS 2019 Workshop on Robust AI in Financial Services: Data, Fairness, Explainability, Trustworthiness, and Privacy, 13 Dec 2019, Vancouver, Canada.

Kopparti, R. M. & Weyde, T. ORCID: 0000-0001-8028-9905 (2019). Weight Priors for Learning Identity Relations. Paper presented at the Thirty-third Conference on Neural Information Processing Systems (NeurIPS 2019), 8-14 Dec 2019, Vancouver, Canada.

Child, C. H. T. ORCID: 0000-0001-5425-2308, Koluman, C. & Weyde, T. ORCID: 0000-0001-8028-9905 (2019). Modelling Emotion Based Reward Valuation with Computational Reinforcement Learning. Paper presented at the Cogsci 2019, 24-27 Jul 2019, Montreal, Canada.

Kopparti, R. M. & Weyde, T. ORCID: 0000-0001-8028-9905 (2019). Factors for the Generalisation of Identity Relations by Neural Networks. Paper presented at the Thirty-sixth International Conference on Machine Learning (ICML 2019 ), 9-15 Jun 2019, Long Beach, USA.

de Valk, R. & Weyde, T. ORCID: 0000-0001-8028-9905 (2018). Deep neural networks with voice entry estimation heuristics for voice separation in symbolic music representations. Paper presented at the 19th International Society for Music Information Retrieval Conference (ISMIR 2018), 23-27 Sep 2018, Paris, France.

Weyde, T. ORCID: 0000-0001-8028-9905 & Kopparti, R. M. (2018). Feed-Forward Neural Networks Need Inductive Bias to Learn Equality Relations. Paper presented at the 32nd Conference on Neural Information Processing Systems (NIPS 2018), 2-8 Dec 2018, Montreal, Canada.

Kedyte, V., Panteli, M., Weyde, T. ORCID: 0000-0001-8028-9905 & Dixon, S. (2017). Geographical Origin Prediction of Folk Music Recordings from the United Kingdom. Paper presented at the 18th International Society for Music Information Retrieval Conference, 23-27 Oct 2017, Suzhou, China.

Jansson, A., Humphrey, E., Montecchio, N. , Bittner, R., Kumar, A. & Weyde, T. ORCID: 0000-0001-8028-9905 (2017). Singing voice separation with deep U-Net convolutional networks. Paper presented at the 18th International Society for Music Information Retrieval Conference, 23-27 Oct 2017, Suzhou, China.

Lambert, A. J., Weyde, T. ORCID: 0000-0001-8028-9905 & Armstrong, N. ORCID: 0000-0002-1927-7371 (2016). Adaptive Frequency Neural Networks for Dynamic Pulse and Metre Perception. In: Mandel, M. I., Devaney, J., Turnbull, D. & Tzanetakis, G. (Eds.), Proceedings of the 17th International Society for Music Information Retrieval Conference, ISMIR 2016, New York City, United States, August 7-11, 2016. (pp. 60-66). Dagstuhl: Schloss Dagstuhl LZI,. ISBN 978-0-692-75506-8

Sigtia, S., Benetos, E., Boulanger-Lewandowski, N. , Weyde, T., Garcez, A. & Dixon, S. (2015). A Hybrid Recurrent Neural Network For Music Transcription. Paper presented at the 40th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2015, 19-04-2015 - 24-04-2015, Brisbane, Australia.

Weyde, T., Cottrell, S.J., Dykes, J. , Benetos, E., Wolff, D., Tidhar, D., Gold, N., Abdallah, S., Plumbley, M. D., Dixon, S., Barthet, M., Mahey, M., Tovell, A. & Alancar-Brayner, A. (2014). Big Data for Musicology. Paper presented at the 1st International Digital Libraries for Musicology workshop, 12-09-2014 - 12-09-2014, London, UK.

Wolff, D., Tidhar, D., Benetos, E. , Dumon, E., Cherla, S. & Weyde, T. (2014). Incremental dataset definition for large scale musicological research. In: Page, K. & Fields, B. (Eds.), DLfM '14 Proceedings of the 1st International Workshop on Digital Libraries for Musicology. (pp. 1-8). New York: ACM. ISBN 978-1-4503-3002-2

Barthet, M., Plumbley, M. D., Kachkaev, A. , Dykes, J., Wolff, D. & Weyde, T. (2014). Big Chord Data Extraction and Mining. Paper presented at the 9th Conference on Interdisciplinary Musicology – CIM14, 03-12-2014 - 06-12-2014, Staatliches Institut für Musikforschung, Berlin, Germany.

Benetos, E., Jansson, A. & Weyde, T. (2014). Improving automatic music transcription through key detection. Paper presented at the AES 53rd International Conference on Semantic Audio, 27 - 29 Jan 2014, London, UK.

Sigtia, S., Benetos, E., Cherla, S. , Weyde, T., Garcez, A. & Dixon, S. (2014). An RNN-based Music Language Model for Improving Automatic Music Transcription. Paper presented at the 15th International Society for Music Information Retrieval Conference (ISMIR), 27-10-2014 - 31-10-2014, Taipei, Taiwan.

Lambert, A., Weyde, T. & Armstrong, N. (2014). Studying the Effect of Metre Perception on Rhythm and Melody Modelling with LSTMs. Paper presented at the 3rd International Workshop on Musical Metacreation, held at the 10th Artificial Intelligence and Interactive Digital Entertainment Conference, 03-10-2014 - 07-10-2014, Raleigh, USA.

Benetos, E., Badeau, R., Weyde, T. & Richard, G. (2014). Template Adaptation for Improving Automatic Music Transcription. Paper presented at the 15th International Society for Music Information Retrieval Conference (ISMIR), 27-10-2014 - 31-10-2014, Taipei, Taiwan.

Kachkaev, A., Wolff, D., Barthet, M. , Tidhar, D., Plumbley, M. D., Dykes, J. & Weyde, T. (2014). Visualising Chord Progressions in Music Collections: A Big Data Approach. Paper presented at the 9th Conference on Interdisciplinary Musicology – CIM14, 03-12-2014 - 06-12-2014, Staatliches Institut für Musikforschung, Berlin, Germany.

Benetos, E. & Weyde, T. (2013). Explicit duration hidden Markov models for multiple-instrument polyphonic music transcription. Paper presented at the 14th International Society for Music Information Retrieval Conference, 4 - 8 Nov 2013, Curitiba, Brazil.

Cherla, S., Weyde, T., Garcez, A. & Pearce, M. (2013). Learning Distributed Representations for Multiple-Viewpoint Melodic Prediction. Paper presented at the 14th International Society for Music Information Retrieval Conference, 4 - 8 Nov 2013, Curtiba, PR, Brazil.

Benetos, E., Cherla, S. & Weyde, T. (2013). An efficient shift-invariant model for polyphonic music transcription. Paper presented at the MML 2013: 6th International Workshop on Machine Learning and Music, 23 Sep 2013, Prague, Czech Republic.

de Valk, R., Weyde, T. & Benetos, E. (2013). A machine learning approach to voice separation in lute tablature. Paper presented at the 14th International Society for Music Information Retrieval Conference, 4 - 8 Nov 2013, Curitiba, Brazil.

Wolff, D., Stober, S., Nürnberger, A. & Weyde, T. (2012). A Systematic Comparison of Music Similarity Adaptation Approaches. Paper presented at the 13th International Society for Music Information Retrieval Conference (ISMIR 2012), 8 - 12 Oct 2012, Porto, Portugal.

Weyde, T. & Wolff, D. (2011). Adapting Metrics for Music Similarity Using Comparative Ratings. Paper presented at the 12th International Society for Music Information, 24 - 28 Oct 2011, Miami, FL, US.

Wissmann, Jens, Weyde, T. & Conklin, D. (2010). Representing chord sequences in OWL. Paper presented at the Sound and Music Computing Conference 2010, 21 - 24 June 2010, Barcelona, Spain.

Weyde, T. (2007). Automatic Semantic Annotation of Music with Harmonic Structure. Paper presented at the 4th Sound and Music Computing Conference, 11 - 13 Jul 2007, Lefkada, Greece.

Weyde, T., Ng, K., Neubarth, K. , Larkin, O., Koerselman, T. & Ong, B. (2007). A Systemic Approach to Music Performance Learning with Multimodal Technology. Paper presented at the Support E-Learning Conference, 2007, Quebec City, Canada.

Weyde, T. (2002). Integrating Segmentation and Similarity in Melodic Analysis. Paper presented at the 7th International Conference on Music Perception & Cognition - ICMPC7, 17 - 21 Jul 2002, Sydney, Australia.

Report

Honingh, A. & Weyde, T. (2008). Integrating Convexity and Compactness into the ISSM: Melodic Analysis of Music (TR/2008/DOC/03). . doi: TR/2008/DOC/03

This list was generated on Tue Jan 18 04:48:26 2022 UTC.