City Research Online

Items where City Author is "Tarroni, Giacomo"

Up a level
Export as [feed] RSS 2.0 [feed] RSS
Group by: Type | No Grouping
Number of items: 19.

Article

Naval Marimont, S. and Tarroni, G. (2021). Implicit Field Learning for Unsupervised Anomaly Detection in Medical Images. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12902, pp. 189-198. doi: 10.1007/978-3-030-87196-3_18

Guizzo, E., Weyde, T. ORCID: 0000-0001-8028-9905 and Tarroni, G. ORCID: 0000-0002-0341-6138 (2021). Anti-transfer learning for task invariance in convolutional neural networks for speech processing. Neural Networks, 142, pp. 238-251. doi: 10.1016/j.neunet.2021.05.012

Bai, W., Suzuki, H., Huang, J., Francis, C., Wang, S., Tarroni, G. ORCID: 0000-0002-0341-6138, Guitton, F., Aung, N., Fung, K., Petersen, S. E., Piechnik, S. K., Neubauer, S., Evangelou, E., Dehghan, A., O'Regan, D., Wilkinson, M., Guo, Y., Matthews, P. M. and Rueckert, D. (2020). A population-based phenome-wide association study of cardiac and aortic structure and function. Nature Medicine, 26(10), pp. 1654-1662. doi: 10.1038/s41591-020-1009-y

Biffi, C., Cerrolaza, J. J., Tarroni, G. ORCID: 0000-0002-0341-6138, Bai, W., Marvao, A. de, Oktay, O., Ledig, C., Folgoc, L. L., Kamnitsas, K., Doumou, G., Duan, J., Prasad, S. K., Cook, S. A., O'Regan, D. P. and Rueckert, D. (2020). Explainable Anatomical Shape Analysis through Deep Hierarchical Generative Models. IEEE Transactions on Medical Imaging, 39(6), pp. 2088-2099. doi: 10.1109/TMI.2020.2964499

Tarroni, G. ORCID: 0000-0002-0341-6138, Bai, W., Oktay, O., Schuh, A., Suzuki, H., Glocker, B., Matthews, P. M. and Rueckert, D. (2020). Large-scale Quality Control of Cardiac Imaging in Population Studies: Application to UK Biobank. Scientific Reports, 10(1), 2408.. doi: 10.1038/s41598-020-58212-2

Biffi, C., Cerrolaza, J. J., Tarroni, G. ORCID: 0000-0002-0341-6138, de Marvao, A., Cook, S. A., O'Regan, D. P. and Rueckert, D. (2019). 3D High-Resolution Cardiac Segmentation Reconstruction From 2D Views Using Conditional Variational Autoencoders. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 2019, pp. 1643-1646. doi: 10.1109/ISBI.2019.8759328

Tarroni, G. ORCID: 0000-0002-0341-6138, Oktay, O., Bai, W., Schuh, A., Suzuki, H., Passerat-Palmbach, J., De Marvao, A., O’Regan, D. P., Cook, S., Glocker, B., Matthews, P M. and Rueckert, D. (2019). Learning-based quality control for cardiac MR images. IEEE Transactions on Medical Imaging, 38(5), pp. 1127-1138. doi: 10.1109/TMI.2018.2878509

Bai, W., Sinclair, M., Tarroni, G. ORCID: 0000-0002-0341-6138, Oktay, O., Rajchl, M., Vaillant, G., Lee, A. M., Aung, N., Lukaschuk, E., Sanghvi, M. M., Zemrak, F., Fung, K., Paiva, J. M., Carapella, V., Kim, Y. J., Suzuki, H., Kainz, B., Matthews, P M., Petersen, S. E., Piechnik, S. K., Neubauer, S., Glocker, B. and Rueckert, D. (2018). Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. Journal of Cardiovascular Magnetic Resonanc, 20, 65. doi: 10.1186/s12968-018-0471-x

Conference or Workshop Item

Marimont, S. N. and Tarroni, G. ORCID: 0000-0002-0341-6138 (2021). Anomaly detection through latent space restoration using vector-quantized variational autoencoders. Paper presented at the IEEE ISBI 2021, 13-16 Apr 2021.

Marimont, S. N. and Tarroni, G. ORCID: 0000-0002-0341-6138 (2021). Implicit field learning for unsupervised anomaly detection in medical images. Paper presented at the MICCAI 2021, 27 Sep-1 Oct 2021, Strasbourg, France.

Chen, C., Qin, C., Qiu, H., Ouyang, C., Wang, S., Chen, L., Tarroni, G. ORCID: 0000-0002-0341-6138, Bai, W. and Rueckert, D. (2020). Realistic Adversarial Data Augmentation for MR Image Segmentation. Paper presented at the 23rd International Conference on Medical Image Computing and Computer Assisted Intervention, 04 - 08 October 2020, Lima, Peru.

Wang, S., Tarroni, G. ORCID: 0000-0002-0341-6138, Qin, C., Mo, Y., Dai, C., Chen, C., Glocker, B., Guo, Y., Rueckert, D. and Bai, W. (2020). Deep Generative Model-based Quality Control for Cardiac MRI Segmentation. Paper presented at the 23rd International Conference on Medical Image Computing and Computer Assisted Intervention, 04 - 08 October 2020, Lima, Peru.

Chen, C., Ouyang, C., Tarroni, G. ORCID: 0000-0002-0341-6138, Schlemper, J., Qiu, H., Bai, W. and Rueckert, D. (2020). Unsupervised Multi-modal Style Transfer for Cardiac MR Segmentation. In: Pop, M., Sermesant, M., Camara, O., Zhuang, X., Li, S., Young, A., Mansi, T. and Suinesiaputra, A. (Eds.), Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges. STACOM 2019. (pp. 209-219). Cham, Switzerland: Springer. ISBN 978-3-030-39073-0

Bai, W., Chen, C., Tarroni, G. ORCID: 0000-0002-0341-6138, Duan, J., Guitton, F., Petersen, S. E., Guo, Y., Matthews, P. M. and Rueckert, D. (2019). Self-Supervised Learning for Cardiac MR Image Segmentation by Anatomical Position Prediction. In: Shen, D., Liu, T., Peters, T. M., Staib, L. H., Essert, C., Zhou, S., Yap, P-T. and Khan, A. (Eds.), Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. Lecture Notes in Computer Science, vol 11765. (pp. 541-549). Cham: Springer. ISBN 9783030322441

Tarroni, G. ORCID: 0000-0002-0341-6138, Oktay, O., Sinclair, M., Bai, W., Schuh, A., Suzuki, H., de Marvao, A., O'Regan, D., Cook, S. and Rueckert, D. (2018). A Comprehensive Approach for Learning-Based Fully-Automated Inter-slice Motion Correction for Short-Axis Cine Cardiac MR Image Stacks. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. Lecture Notes in Computer Science, 11070. (pp. 268-276). Cham: Springer. ISBN 978-3-030-00927-4

Biffi, C., Oktay, O., Tarroni, G. ORCID: 0000-0002-0341-6138, De Marvao, A., Bai, W., Doumou, G., Rajchl, M., Bedair, R., Prasad, S., Cook, S., O'Regan, D. and Rueckert, D. (2018). Learning Interpretable Anatomical Features Through Deep Generative Models: Application to Cardiac Remodeling. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. MICCAI 2018. Lecture Notes in Computer Science, 11071. (pp. 464-471). Cham: Springer. ISBN 978-3-030-00933-5

Bai, W., Suzuki, H., Qin, C., Tarroni, G. ORCID: 0000-0002-0341-6138, Oktay, O., Matthews, P. M. and Rueckert, D. (2018). Recurrent Neural Networks for Aortic Image Sequence Segmentation with Sparse Annotations. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. Lecture Notes in Computer Science, 11073. (pp. 586-594). Cham: Springer. ISBN 978-3-030-00936-6

Working Paper

Rajchl, M., Lee, M., Schrans, F., Davidson, A., Passerat-Palmbach, J., Tarroni, G. ORCID: 0000-0002-0341-6138, Alansary, A., Oktay, O., Kainz, B. and Rueckert, D. (2020). Learning under Distributed Weak Supervision. .

Chen, C., Qin, C., Qiu, H., Tarroni, G. ORCID: 0000-0002-0341-6138, Duan, J., Bai, W. and Rueckert, D. (2019). Deep learning for cardiac image segmentation: A review. City, university of London.

This list was generated on Sat Dec 4 04:42:00 2021 UTC.