City Research Online

Items where City Author is "Tarroni, Giacomo"

Up a level
Group by: Type | No Grouping
Number of items: 28.

Siomos, V., Naval-Marimont, S., Passerat-Palmbach, J. & Tarroni, G. ORCID: 0000-0002-0341-6138 (2024). ARIA: On the Interaction Between Architectures, Initialization and Aggregation Methods for Federated Visual Classification. Paper presented at the 2024 IEEE International Symposium on Biomedical Imaging (ISBI), 27-30 May 2024, Athens, Greece. doi: 10.1109/isbi56570.2024.10635565

Marimont, S. N., Siomos, V. & Tarroni, G. ORCID: 0000-0002-0341-6138 (2024). MIM-OOD: Generative Masked Image Modelling for Out-of-Distribution Detection in Medical Images. In: Deep Generative Models. Third MICCAI Workshop, DGM4MICCAI 2023, 8-12 Oct 2023, Vancouver, Canada. doi: 10.1007/978-3-031-53767-7_4

Guizzo, E., Weyde, T. ORCID: 0000-0001-8028-9905, Tarroni, G. ORCID: 0000-0002-0341-6138 & Comminiello, D. (2023). Quaternion Anti-Transfer Learning for Speech Emotion Recognition. In: 2023 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA). 2023 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 22-25 Oct 2023, New Paltz, NY, USA. doi: 10.1109/WASPAA58266.2023.10248082

Siomos, V., Tarroni, G. ORCID: 0000-0002-0341-6138 & Passerrat-Palmbach, J. (2023). FeTS Challenge 2022 Task 1: Implementing FedMGDA + and a New Partitioning. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. 8th International Workshop, BrainLes 2022, 18 Sep 2022, Singapore. doi: 10.1007/978-3-031-44153-0_15

van de Venter, R., Skelton, E. ORCID: 0000-0003-0132-7948, Matthew, J. , Woznitza, N., Tarroni, G. ORCID: 0000-0002-0341-6138, Hirani, S. P. ORCID: 0000-0002-1577-8806, Kumar, A., Malik, R. & Malamateniou, C. ORCID: 0000-0002-2352-8575 (2023). Artificial intelligence education for radiographers, an evaluation of a UK postgraduate educational intervention using participatory action research: a pilot study. Insights Imaging, 14(1), article number 25. doi: 10.1186/s13244-023-01372-2

Chen, C., Qin, C., Ouyang, C. , Li, Z., Wang, S., Qiu, H., Chen, L., Tarroni, G. ORCID: 0000-0002-0341-6138, Bai, W. & Rueckert, D. (2022). Enhancing MR image segmentation with realistic adversarial data augmentation. Medical Image Analysis, 82, article number 102597. doi: 10.1016/j.media.2022.102597

Marimont, S. N. & Tarroni, G. ORCID: 0000-0002-0341-6138 (2022). Implicit U-Net for Volumetric Medical Image Segmentation. In: Lecture Notes in Computer Science. Medical Image Understanding and Analysis 26th Annual Conference, MIUA 2022, 27-29 Jul 2022, Cambridge, UK. doi: 10.1007/978-3-031-12053-4_29

Zimmerer, D., Full, P. M, Isensee, F. , Jäger, P., Adler, T., Petersen, J., Kohler, G., Ross, T., Reinke, A., Kascenas, A., Jensen, B. S., O'Neil, A. Q., Tan, J., Hou, B., Batten, J., Qiu, H., Kainz, B., Shvetsova, N., Fedulova, I., Dylov, D. V., Yu, B., Zhai, J., Hu, J., Si, R., Zhou, S., Wang, S., Li, X., Chen, X., Zhao, Y., Marimont, S. N., Tarroni, G. ORCID: 0000-0002-0341-6138, Saase, V., Maier-Hein, L. & Maier-Hein, K. (2022). MOOD 2020: A public Benchmark for Out-of-Distribution Detection and Localization on medical Images. IEEE Transactions on Medical Imaging, 41(10), pp. 2728-2738. doi: 10.1109/tmi.2022.3170077

Naval Marimont, S. & Tarroni, G. (2021). Implicit Field Learning for Unsupervised Anomaly Detection in Medical Images. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12902, pp. 189-198. doi: 10.1007/978-3-030-87196-3_18

Marimont, S. N. & Tarroni, G. ORCID: 0000-0002-0341-6138 (2021). Implicit field learning for unsupervised anomaly detection in medical images. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021, 27 Sep-1 Oct 2021, Strasbourg, France. doi: 10.1007/978-3-030-87196-3_18

Marimont, S. N. & Tarroni, G. ORCID: 0000-0002-0341-6138 (2021). Anomaly detection through latent space restoration using vector-quantized variational autoencoders. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI). IEEE ISBI 2021, 13-16 Apr 2021, Nice, France. doi: 10.1109/ISBI48211.2021.9433778

Guizzo, E., Weyde, T. ORCID: 0000-0001-8028-9905 & Tarroni, G. ORCID: 0000-0002-0341-6138 (2021). Anti-transfer learning for task invariance in convolutional neural networks for speech processing. Neural Networks, 142, pp. 238-251. doi: 10.1016/j.neunet.2021.05.012

Bai, W., Suzuki, H., Huang, J. , Francis, C., Wang, S., Tarroni, G. ORCID: 0000-0002-0341-6138, Guitton, F., Aung, N., Fung, K., Petersen, S. E., Piechnik, S. K., Neubauer, S., Evangelou, E., Dehghan, A., O'Regan, D., Wilkinson, M., Guo, Y., Matthews, P. M. & Rueckert, D. (2020). A population-based phenome-wide association study of cardiac and aortic structure and function. Nature Medicine, 26(10), pp. 1654-1662. doi: 10.1038/s41591-020-1009-y

Wang, S., Tarroni, G. ORCID: 0000-0002-0341-6138, Qin, C. , Mo, Y., Dai, C., Chen, C., Glocker, B., Guo, Y., Rueckert, D. & Bai, W. (2020). Deep Generative Model-based Quality Control for Cardiac MRI Segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. 23rd International Conference on Medical Image Computing and Computer Assisted Intervention, 04 - 08 October 2020, Lima, Peru. doi: 10.1007/978-3-030-59719-1_9

Chen, C., Qin, C., Qiu, H. , Ouyang, C., Wang, S., Chen, L., Tarroni, G. ORCID: 0000-0002-0341-6138, Bai, W. & Rueckert, D. (2020). Realistic Adversarial Data Augmentation for MR Image Segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. 23rd International Conference on Medical Image Computing and Computer Assisted Intervention, 04 - 08 October 2020, Lima, Peru. doi: 10.1007/978-3-030-59710-8_65

Biffi, C., Cerrolaza, J. J., Tarroni, G. ORCID: 0000-0002-0341-6138 , Bai, W., Marvao, A. de, Oktay, O., Ledig, C., Folgoc, L. L., Kamnitsas, K., Doumou, G., Duan, J., Prasad, S. K., Cook, S. A., O'Regan, D. P. & Rueckert, D. (2020). Explainable Anatomical Shape Analysis through Deep Hierarchical Generative Models. IEEE Transactions on Medical Imaging, 39(6), pp. 2088-2099. doi: 10.1109/tmi.2020.2964499

Chen, C., Qin, C., Qiu, H. , Tarroni, G. ORCID: 0000-0002-0341-6138, Duan, J., Bai, W. & Rueckert, D. (2020). Deep Learning for Cardiac Image Segmentation: A Review. Frontiers in Cardiovascular Medicine, 7, article number 25. doi: 10.3389/fcvm.2020.00025

Tarroni, G. ORCID: 0000-0002-0341-6138, Bai, W., Oktay, O. , Schuh, A., Suzuki, H., Glocker, B., Matthews, P. M. & Rueckert, D. (2020). Large-scale Quality Control of Cardiac Imaging in Population Studies: Application to UK Biobank. Scientific Reports, 10(1), article number 2408. doi: 10.1038/s41598-020-58212-2

Rajchl, M., Lee, M., Schrans, F. , Davidson, A., Passerat-Palmbach, J., Tarroni, G. ORCID: 0000-0002-0341-6138, Alansary, A., Oktay, O., Kainz, B. & Rueckert, D. (2020). Learning under Distributed Weak Supervision.

Chen, C., Ouyang, C., Tarroni, G. ORCID: 0000-0002-0341-6138 , Schlemper, J., Qiu, H., Bai, W. & Rueckert, D. (2020). Unsupervised Multi-modal Style Transfer for Cardiac MR Segmentation. In: Pop, M., Sermesant, M., Camara, O. , Zhuang, X., Li, S., Young, A., Mansi, T. & Suinesiaputra, A. (Eds.), Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges. STACOM 2019. STACOM 2019, 13 Oct 2019, Shenzen, China. doi: 10.1007/978-3-030-39074-7_22

Bai, W., Chen, C., Tarroni, G. ORCID: 0000-0002-0341-6138 , Duan, J., Guitton, F., Petersen, S. E., Guo, Y., Matthews, P. M. & Rueckert, D. (2019). Self-Supervised Learning for Cardiac MR Image Segmentation by Anatomical Position Prediction. In: Shen, D., Liu, T., Peters, T. M. , Staib, L. H., Essert, C., Zhou, S., Yap, P-T. & Khan, A. (Eds.), Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. Lecture Notes in Computer Science, vol 11765.

Biffi, C., Cerrolaza, J. J., Tarroni, G. ORCID: 0000-0002-0341-6138 , de Marvao, A., Cook, S. A., O'Regan, D. P. & Rueckert, D. (2019). 3D High-Resolution Cardiac Segmentation Reconstruction From 2D Views Using Conditional Variational Autoencoders. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 2019-A, pp. 1643-1646. doi: 10.1109/isbi.2019.8759328

Tarroni, G. ORCID: 0000-0002-0341-6138, Oktay, O., Bai, W. , Schuh, A., Suzuki, H., Passerat-Palmbach, J., De Marvao, A., O’Regan, D. P., Cook, S., Glocker, B., Matthews, P M. & Rueckert, D. (2019). Learning-based quality control for cardiac MR images. IEEE Transactions on Medical Imaging, 38(5), pp. 1127-1138. doi: 10.1109/tmi.2018.2878509

Chen, C., Qin, C., Qiu, H. , Tarroni, G. ORCID: 0000-0002-0341-6138, Duan, J., Bai, W. & Rueckert, D. (2019). Deep learning for cardiac image segmentation: A review. City, university of London.

Tarroni, G. ORCID: 0000-0002-0341-6138, Oktay, O., Sinclair, M. , Bai, W., Schuh, A., Suzuki, H., de Marvao, A., O'Regan, D., Cook, S. & Rueckert, D. (2018). A Comprehensive Approach for Learning-Based Fully-Automated Inter-slice Motion Correction for Short-Axis Cine Cardiac MR Image Stacks. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. doi: 10.1007/978-3-030-00928-1_31

Biffi, C., Oktay, O., Tarroni, G. ORCID: 0000-0002-0341-6138 , De Marvao, A., Bai, W., Doumou, G., Rajchl, M., Bedair, R., Prasad, S., Cook, S., O'Regan, D. & Rueckert, D. (2018). Learning Interpretable Anatomical Features Through Deep Generative Models: Application to Cardiac Remodeling. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. MICCAI 2018. doi: 10.1007/978-3-030-00934-2_52

Bai, W., Sinclair, M., Tarroni, G. ORCID: 0000-0002-0341-6138 , Oktay, O., Rajchl, M., Vaillant, G., Lee, A. M., Aung, N., Lukaschuk, E., Sanghvi, M. M., Zemrak, F., Fung, K., Paiva, J. M., Carapella, V., Kim, Y. J., Suzuki, H., Kainz, B., Matthews, P M., Petersen, S. E., Piechnik, S. K., Neubauer, S., Glocker, B. & Rueckert, D. (2018). Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. Journal of Cardiovascular Magnetic Resonanc, 20(1), article number 65. doi: 10.1186/s12968-018-0471-x

Bai, W., Suzuki, H., Qin, C. , Tarroni, G. ORCID: 0000-0002-0341-6138, Oktay, O., Matthews, P. M. & Rueckert, D. (2018). Recurrent Neural Networks for Aortic Image Sequence Segmentation with Sparse Annotations. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. doi: 10.1007/978-3-030-00937-3_67

This list was generated on Tue Dec 10 02:33:00 2024 UTC.