Arterial stiffness assessment using PPG feature extraction and significance testing in an in vitro cardiovascular system
Ferizoli, R., Karimpour, P., May, J. M. & Kyriacou, P. A. ORCID: 0000-0002-2868-485X (2024). Arterial stiffness assessment using PPG feature extraction and significance testing in an in vitro cardiovascular system. Scientific Reports, 14(1), article number 2024. doi: 10.1038/s41598-024-51395-y
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of global mortality, therefore understanding arterial stiffness is essential to developing innovative technologies to detect, monitor and treat them. The ubiquitous spread of photoplethysmography (PPG), a completely non-invasive blood-volume sensing technology suitable for all ages, highlights immense potential for arterial stiffness assessment in the wider healthcare setting outside specialist clinics, for example during routine visits to a General Practitioner or even at home with the use of mobile and wearable health devices. This study employs a custom-manufactured in vitro cardiovascular system with vessels of varying stiffness to test the hypothesis that PPG signals may be used to detect and assess the level of arterial stiffness under controlled conditions. Analysis of various morphological features demonstrated significant (p < 0.05) correlations with vessel stiffness. Particularly, area related features were closely linked to stiffness in red PPG signals, while for infrared PPG signals the most correlated features were related to pulse-width. This study demonstrates the utility of custom vessels and in vitro investigations to work towards non-invasive cardiovascular assessment using PPG, a valuable tool with applications in clinical healthcare, wearable health devices and beyond.
Publication Type: | Article |
---|---|
Additional Information: | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Publisher Keywords: | Arterial stiffening, Biomedical engineering, Vascular diseases |
Subjects: | R Medicine > RC Internal medicine T Technology > TA Engineering (General). Civil engineering (General) |
Departments: | School of Science & Technology School of Science & Technology > Engineering |
SWORD Depositor: |
Available under License Creative Commons Attribution.
Download (1MB) | Preview
Export
Downloads
Downloads per month over past year