City Research Online

Hebbian learning can explain rhythmic neural entrainment to statistical regularities

Endress, A. (2024). Hebbian learning can explain rhythmic neural entrainment to statistical regularities. Developmental Science,

Abstract

In many domains, learners extract recurring units from continuous sequences. For example, in unknown languages, fluent speech is perceived as a continuous signal. Learners need to extract the underlying words from this continuous signal and then memorize them. One prominent candidate mechanism is statistical learning, whereby learners track how predictive syllables (or other items) are of one another. Syllables within the same word predict each other better than syllables straddling word boundaries. But does statistical learning lead to memories of the underlying words—or just to pairwise associations among syllables? Electrophysiological results provide the strongest evidence for the memory view. Electrophysiological responses can be time-locked to statistical word boundaries (e.g., N400’s) and show rhythmic activity with a periodicity of word durations. Here, I reproduce such results with a simple Hebbian network. When exposed to statistically structured syllable sequences (and when the underlying words are not excessively long), the network activation is rhythmic with the periodicity of a word duration and activation maxima on word-final syllables. This is because word-final syllables receive more excitation from earlier syllables with which they are associated than less predictable syllables that occur earlier in words. The network is also sensitive to information whose electrophysiological correlates were used to support the encoding of ordinal positions within words. Hebbian learning can thus explain rhythmic neural activity in statistical learning tasks without any memory representations of words. Learners might thus need to rely on cues beyond statistical associations to learn the words of their native language.

Publication Type: Article
Additional Information: This is the peer reviewed version of the following article: Endress, A. (2024). Hebbian learning can explain rhythmic neural entrainment to statistical regularities. Developmental Science, which is to be published in final form at https://onlinelibrary.wiley.com/journal/14677687. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.
Publisher Keywords: Statistical Learning; Implicit Learning; Transitional Probabilities; Neural Networks; Neural Entrainment; N400
Subjects: B Philosophy. Psychology. Religion > BF Psychology
Q Science > QA Mathematics > QA75 Electronic computers. Computer science
R Medicine > RC Internal medicine > RC0321 Neuroscience. Biological psychiatry. Neuropsychiatry
Departments: School of Health & Psychological Sciences
School of Health & Psychological Sciences > Psychology
SWORD Depositor:
[thumbnail of tp_model_entrainment_paper_revision3_jou.pdf] Text - Accepted Version
This document is not freely accessible due to copyright restrictions.

To request a copy, please use the button below.

Request a copy

Export

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login