Bilinear Models of Parts and Appearances in Generative Adversarial Networks
Oldfield, J., Tzelepis, C. ORCID: 0000-0002-2036-9089, Panagakis, Y. , Nicolaou, M. A. & Patras, I. (2024). Bilinear Models of Parts and Appearances in Generative Adversarial Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(12), pp. 8568-8579. doi: 10.1109/tpami.2024.3415506
Abstract
Recent advances in the understanding of Generative Adversarial Networks (GANs) have led to remarkable progress in visual editing and synthesis tasks, capitalizing on the rich semantics that are embedded in the latent spaces of pre-trained GANs. However, existing methods are often tailored to specific GAN architectures and are limited to either discovering global semantic directions that do not facilitate localized control, or require some form of supervision through manually provided regions or segmentation masks. In this light, we present an architecture-agnostic approach that jointly discovers factors representing spatial parts and their appearances in an entirely unsupervised fashion. These factors are obtained by applying a semi-nonnegative tensor factorization on the feature maps, which in turn enables context-aware local image editing with pixel-level control. In addition, we show that the discovered appearance factors correspond to saliency maps that localize concepts of interest, without using any labels. Experiments on a wide range of GAN architectures and datasets show that, in comparison to the state of the art, our method is far more efficient in terms of training time and, most importantly, provides much more accurate localized control.
Publication Type: | Article |
---|---|
Additional Information: | © 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
Publisher Keywords: | GANs, Interpretability, Local Image Editing |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Departments: | School of Science & Technology School of Science & Technology > Computer Science |
SWORD Depositor: |
Download (6MB) | Preview
Export
Downloads
Downloads per month over past year