Amacrine cells differentially balance zebrafish color circuits in the central and peripheral retina
Wang, X., Roberts, P. A., Yoshimatsu, T. , Lagnado, L. & Baden, T. ORCID: 0000-0003-2808-4210 (2023). Amacrine cells differentially balance zebrafish color circuits in the central and peripheral retina. Cell Reports, 42(2), article number 112055. doi: 10.1016/j.celrep.2023.112055
Abstract
The vertebrate inner retina is driven by photoreceptors whose outputs are already pre-processed; in zebrafish, outer retinal circuits split “color” from “grayscale” information across four cone-photoreceptor types. It remains unclear how the inner retina processes incoming spectral information while also combining cone signals to shape grayscale functions. We address this question by imaging the light-driven responses of amacrine cells (ACs) and bipolar cells (BCs) in larval zebrafish in the presence and pharmacological absence of inner retinal inhibition. We find that ACs enhance opponency in some bipolar cells while at the same time suppressing pre-existing opponency in others, so that, depending on the retinal region, the net change in the number of color-opponent units is essentially zero. To achieve this “dynamic balance,” ACs counteract intrinsic color opponency of BCs via the On channel. Consistent with these observations, Off-stratifying ACs are exclusively achromatic, while all color-opponent ACs stratify in the On sublamina.
Publication Type: | Article |
---|---|
Additional Information: | This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
Publisher Keywords: | retina, amacrine cell, bipolar cell, color vision, inhibition, zebrafish |
Subjects: | Q Science > QL Zoology R Medicine > RE Ophthalmology |
Departments: | School of Health & Psychological Sciences School of Health & Psychological Sciences > Optometry & Visual Sciences |
SWORD Depositor: |
Available under License Creative Commons: Attribution International Public License 4.0.
Download (6MB) | Preview
Export
Downloads
Downloads per month over past year