City Research Online

Birds multiplex spectral and temporal visual information via retinal On- and Off-channels

Seifert, M., Roberts, P. A. ORCID: 0000-0001-5293-6431, Kafetzis, G. , Osorio, D. ORCID: 0000-0002-5856-527X & Baden, T. ORCID: 0000-0003-2808-4210 (2023). Birds multiplex spectral and temporal visual information via retinal On- and Off-channels. Nature Communications, 14(1), article number 5308. doi: 10.1038/s41467-023-41032-z

Abstract

In vertebrate vision, early retinal circuits divide incoming visual information into functionally opposite elementary signals: On and Off, transient and sustained, chromatic and achromatic. Together these signals can yield an efficient representation of the scene for transmission to the brain via the optic nerve. However, this long-standing interpretation of retinal function is based on mammals, and it is unclear whether this functional arrangement is common to all vertebrates. Here we show that male poultry chicks use a fundamentally different strategy to communicate information from the eye to the brain. Rather than using functionally opposite pairs of retinal output channels, chicks encode the polarity, timing, and spectral composition of visual stimuli in a highly correlated manner: fast achromatic information is encoded by Off-circuits, and slow chromatic information overwhelmingly by On-circuits. Moreover, most retinal output channels combine On- and Off-circuits to simultaneously encode, or multiplex, both achromatic and chromatic information. Our results from birds conform to evidence from fish, amphibians, and reptiles which retain the full ancestral complement of four spectral types of cone photoreceptors.

Publication Type: Article
Additional Information: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Subjects: Q Science > QL Zoology
R Medicine > RE Ophthalmology
Departments: School of Health & Psychological Sciences
School of Health & Psychological Sciences > Optometry & Visual Sciences
SWORD Depositor:
[thumbnail of Seifert_et_al_2023.pdf]
Preview
Text - Published Version
Available under License Creative Commons: Attribution International Public License 4.0.

Download (3MB) | Preview

Export

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login