The past, present and future of multi-scale modelling applied to wave–structure interaction in ocean engineering
Sriram, V., Saincher, S., Yan, S. ORCID: 0000-0001-8968-6616 & Ma, Q. W. ORCID: 0000-0001-5579-6454 (2024). The past, present and future of multi-scale modelling applied to wave–structure interaction in ocean engineering. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 382(2281), article number 20230316. doi: 10.1098/rsta.2023.0316
Abstract
Concepts and evolution of multi-scale modelling from the perspective of wave–structure interaction have been discussed. In this regard, both domain and functional decomposition approaches have come into being. In domain decomposition, the computational domain is spatially segregated to handle the far-field using potential flow models and the near field using Navier–Stokes equations. In functional decomposition, the velocity field is separated into irrotational and rotational parts to facilitate identification of the free surface. These two approaches have been implemented alongside partitioned or monolithic schemes for modelling the structure. The applicability of multi-scale modelling approaches has been established using both mesh-based and meshless schemes. Owing to said diversity in numerical techniques, massively collaborative research has emerged, wherein comparative numerical studies are being carried out to identify shortcomings of developed codes and establish best-practices in numerical modelling. Machine learning is also being applied to handle large-scale ocean engineering problems. This paper reports on the past, present and future research consolidating the contributions made over the past 20 years. Some of these past as well as future research contributions have and shall be actualized through funding from the Newton International Fellowship as the next generation of researchers inherits the present-day expertise in multi-scale modelling.
Publication Type: | Article |
---|---|
Additional Information: | © 2024 The Author(s). Published by the Royal Society. All rights reserved. |
Publisher Keywords: | wave-structure interactions, numerical modelling, hybrid coupling, ML and AI |
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) V Naval Science > VM Naval architecture. Shipbuilding. Marine engineering |
Departments: | School of Science & Technology School of Science & Technology > Engineering |
SWORD Depositor: |
Download (2MB) | Preview
Export
Downloads
Downloads per month over past year