City Research Online

Enhancing machine learning-based forecasting of chronic renal disease with explainable AI

Singamsetty, S., Ghanta, S., Biswas, S. ORCID: 0000-0002-6770-9845 & Pradhan, A. (2024). Enhancing machine learning-based forecasting of chronic renal disease with explainable AI. PeerJ Computer Science, 10, article number e2291. doi: 10.7717/peerj-cs.2291

Abstract

Chronic renal disease (CRD) is a significant concern in the field of healthcare, highlighting the crucial need of early and accurate prediction in order to provide prompt treatments and enhance patient outcomes. This article presents an end-to-end predictive model for the binary classification of CRD in healthcare, addressing the crucial need for early and accurate predictions to enhance patient outcomes. Through hyperparameter optimization using GridSearchCV, we significantly improve model performance. Leveraging a range of machine learning (ML) techniques, our approach achieves a high predictive accuracy of 99.07% for random forest, extra trees classifier, logistic regression with L2 penalty, and artificial neural networks (ANN). Through rigorous evaluation, the logistic regression with L2 penalty emerges as the top performer, demonstrating consistent performance. Moreover, integration of Explainable Artificial Intelligence (XAI) techniques, such as Local Interpretable Model-agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP), enhances interpretability and reveals insights into model decision-making. By emphasizing an end-to-end model development process, from data collection to deployment, our system enables real-time predictions and informed healthcare decisions. This comprehensive approach underscores the potential of predictive modeling in healthcare to optimize clinical decision-making and improve patient care outcomes.

Publication Type: Article
Publisher Keywords: Chronic renal disease, Machine learning, Explainable AI, GridSearchCV, Chronic kidney disease
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
R Medicine > RC Internal medicine
Departments: School of Science & Technology
School of Science & Technology > Computer Science
SWORD Depositor:
[thumbnail of peerj-cs-2291.pdf]
Preview
Text - Published Version
Available under License Creative Commons: Attribution International Public License 4.0.

Download (1MB) | Preview

Export

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login