City Research Online

Short paper: Distributed vehicular traffic congestion detection algorithm for urban environments

Milojevic, M. & Rakocevic, V. (2013). Short paper: Distributed vehicular traffic congestion detection algorithm for urban environments. In: IEEE Vehicular Networking Conference, VNC. 2013 IEEE Vehicular Networking Conference (VNC), 16th December - 18th December 2013, Boston, USA.

Abstract

Vehicular traffic congestion is a well-known economic and social problem generating significant costs and safety challenges, and increasing pollution in the cities. Current intelligent transport systems and vehicular networking technologies rely heavily on the supporting network infrastructure which is still not widely available. This paper contributes towards the development of distributed and cooperative vehicular traffic congestion detection by proposing a new vehicle-to-vehicle (V2V) congestion detection algorithm based on the IEEE 802.11p standard. The new algorithm allows vehicles to be self-aware of the traffic in the street, performing congestion detection based on speed monitoring and cooperation with the surrounding vehicles. Cooperation is achieved using adaptive single-hop broadcasting which depends on the level of congestion. The paper presents the congestion detection algorithm and the cooperative communication in detail, and presents performance evaluation using large-scale simulation in Veins framework based on OMNeT++ network simulator and SUMO vehicular mobility simulator. Results show that precise congestion detection and quantification can be achieved using a significantly decreased number of exchanged packets.

Publication Type: Conference or Workshop Item (Paper)
Additional Information: © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Departments: School of Science & Technology > Engineering
[thumbnail of IEEE VNC 2013.pdf]
Preview
PDF
Download (470kB) | Preview

Export

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login