Investigation of metal nanomaterials as a sensing element in LSPR-based optical fibre sensor development
Tu, Minh Hieu (2014). Investigation of metal nanomaterials as a sensing element in LSPR-based optical fibre sensor development. (Unpublished Doctoral thesis, City University London)
Abstract
This thesis aims to explore and demonstrate the potential of using optical fibres both as a waveguide material and a transducer for wide sensing applications, based on a comprehensive review of the localised surface plasmon resonance (LSPR) phenomenon, which occurs at a nanoscale level when light interacts with metallic nanoparticles at a resonance wavelength.
The LSPR effect of metallic nanomaterials has shown a strong dependence on the local surrounding environment. A small change for example in the refractive index or in the solution concentration can result in a variation in the LSPR spectrum. Based on this underpinning sensing mechanism, a portable system using an optical fibre coated with gold nanoparticles (AuNPs) as a sensing probe has been developed and tested for the refractive index measurement. Coupled with this, a systematic approach has been developed and applied in this work to optimize the performance of the developed system by considering several key factors, such as the size of nanoparticles produced, pH, coating time and coating temperature.
The above optimised probes coated with gold-nanoparticles are further cross-compared with those optimized but coated with gold nanorods with a high aspect ratio. Both types of probes are also prepared for a specific biosensing application based on the antibody-antigen interaction to create wavelength-based sensors for the detection of anti-human IgG. Both probes have exhibited excellent refractive index (RI) sensitivity, showing ~914 nm/RIU (refractive index unit) for the probe coated with gold nanoparticles and ~601 nm/RIU for the one coated with gold nanorods. When using the modified probes for the detection of anti-human IgG, both probes are able to achieve a good LOD (limit of detection) at 1.6 nM.
Based on the above cross-comparison, further research has been undertaken to explore the potential of nanoparticles of the alloy of gold and silver, with an aim to combine the robustness of gold and the excellent LSPR effect of silver. To do so, various alloy particles with varied gold/silver ratio and sizes have been prepared and tested for their respective refractive index sensitivities. The probe coated with alloy particles with bigger size and higher silver content has shown better performance in RI sensing. The work has shown a clear relationship between the size of alloys, the content ratio of alloys and RI sensitivity.
Research has also been undertaken in this thesis to explore the excellent LSPR effect of hollow nanoparticles resulting from the enhanced coupling between the interior and exterior of the hollow particles. Gold hollow nanocages have been successfully synthesised and tested with different hollowness and a LSPR sensor coated with gold nanocages has shown an excellent sensitivity as high as ~1933 nm/RIU, which is more than 3 times higher than that coated with AuNPs. This result has confirmed that a significant improvement in sensitivity can be made possible for further biosensing as well as chemical sensing applications.
Publication Type: | Thesis (Doctoral) |
---|---|
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering |
Departments: | Doctoral Theses School of Science & Technology > Engineering School of Science & Technology > School of Science & Technology Doctoral Theses |
Download (8MB) | Preview
Export
Downloads
Downloads per month over past year