City Research Online

The wiener-hopf technique and discretely monitored path-dependent option pricing

Green, R., Fusai, G. & Abrahams, I. D. (2010). The wiener-hopf technique and discretely monitored path-dependent option pricing. Mathematical Finance, 20(2), pp. 259-288. doi: 10.1111/j.1467-9965.2010.00397.x

Abstract

Fusai, Abrahams, and Sgarra (2006) employed the Wiener-Hopf technique to obtain an exact analytic expression for discretely monitored barrier option prices as the solution to the Black-Scholes partial differential equation. The present work reformulates this in the language of random walks and extends it to price a variety of other discretely monitored path-dependent options. Analytic arguments familiar in the applied mathematics literature are used to obtain fluctuation identities. This includes casting the famous identities of Baxter and Spitzer in a form convenient to price barrier, first-touch, and hindsight options. Analyzing random walks killed by two absorbing barriers with a modified Wiener-Hopf technique yields a novel formula for double-barrier option prices. Continuum limits and continuity correction approximations are considered. Numerically, efficient results are obtained by implementing Padé approximation. A Gaussian Black-Scholes framework is used as a simple model to exemplify the techniques, but the analysis applies to Lévy processes generally.

Publication Type: Article
Additional Information: This is the accepted version of the following article: Green, R., Fusai, G. and Abrahams, I. D. (2010), THE WIENER–HOPF TECHNIQUE AND DISCRETELY MONITORED PATH-DEPENDENT OPTION PRICING. Mathematical Finance, 20: 259–288., which has been published in final form at http://dx.doi.org/10.1111/j.1467-9965.2010.00397.x
Publisher Keywords: Barrier, Discrete monitoring, Double-barrier, First-touch, Hindsight, Option pricing, Padé approximants, Wiener-Hopf technique
Subjects: H Social Sciences > HG Finance
Q Science > QA Mathematics
Departments: Bayes Business School > Finance
SWORD Depositor:
[thumbnail of wienerhopf.pdf]
Preview
PDF - Accepted Version
Download (241kB) | Preview

Export

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login