3-D nonlinear dynamic progressive collapse analysis of multi-storey steel composite frame buildings—Parametric study
Fu, F. (2010). 3-D nonlinear dynamic progressive collapse analysis of multi-storey steel composite frame buildings—Parametric study. Engineering Structures, 32(12), pp. 3974-3980. doi: 10.1016/j.engstruct.2010.09.008
Abstract
A 3-dimensional finite element model built by the author was used in this paper to analyze the progressive collapse of a multi-storey steel composite frame building. The proposed model can represent the global 3-D behavior of the multi-storey building under the sudden column removal scenarios. Based on this model, parametric studies were carried out to investigate the structural behavior with variations in: strength of structural steel, strength of concrete and reinforcement mesh size. Through the parametric study, the measures to mitigate progressive collapse in the future design were recommended.
Publication Type: | Article |
---|---|
Additional Information: | NOTICE: this is the author’s version of a work that was accepted for publication in Engineering Structures. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Engineering Structures, Volume 32, Issue 12, December 2010, Pages 3974–3980, http://dx.doi.org/10.1016/j.engstruct.2010.09.008. © 2010 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ |
Publisher Keywords: | Progressive collapse; Connection; Finite element; Modelling |
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) |
Departments: | School of Science & Technology > Engineering |
SWORD Depositor: |
Available under License Creative Commons Attribution Non-commercial No Derivatives.
Download (723kB) | Preview
Export
Downloads
Downloads per month over past year