City Research Online

CFD analysis of effects of damage due to bird strike on fan performance

Bohari, B. & Sayma, A. I. (2010). CFD analysis of effects of damage due to bird strike on fan performance. Paper presented at the ASME Turbo Expo 2010: Power for Land, Sea, and Air, 14-06-2010 - 18-06-2010, Glasgow, UK. doi: 10.1115/GT2010-22365

Abstract

Bird ingestion has been a hazard that affects the structural integrity and survivability of turbofan engines. It can result in deformation of one or more fan blades, in which case, the engine is likely to surge and not recover. Numerical studies and simulations of bird strikes have become essential to optimize the design of engine components simultaneously to increase the engine capabilities for acceptable damage tolerance. Good understanding of these phenomena and the implications on the behaviour of the flow field with respect to the damage affecting the fan blades are usually investigated using computational techniques and/or experimental methods. The purpose of this paper is to present a Computational Fluid Dynamics (CFD) method for the analysis of the aerodynamic behaviour of an aero-engine fan affected by a bird strike. NASA rotor 67 was used as a test case because of the availability of experimental data that can be used to calibrate the model for the undamaged fan. The undamaged fan characteristic was mapped using a modification to the methodology developed by Sayma (2007). In this method a downstream variable throttle is added which allows changing the operating point on the speed characteristic without having to change downstream boundary conditions. This approach allows for changes in fan operating point to come out of the calculation as opposed to those dictated by the downstream static pressure boundary conditions used in typical computations. The methodology is automated allowing for a sweep along a speed characteristic or along a working line in one calculation in the same way as a rig test is conducted. Agreement with experimental data when available was excellent. This provided the base line for the undamaged blades. A damaged blade was inserted among undamaged blades in the fan assembly and the fan characteristic was mapped for a range of rotational speeds. Two different degrees of damage were analysed in an attempt to establish a correlation between the extent of the damage and the locus of the stall boundary. It was found that small increments on the damage lead to significant reduction in stall margin particularly at higher rotational speeds.

Publication Type: Conference or Workshop Item (Paper)
Additional Information: http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1609689
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Departments: School of Science & Technology > Engineering
[thumbnail of ASME2010-22365-draft.pdf] Text - Accepted Version
This document is not freely accessible due to copyright restrictions.

Export

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login