City Research Online

Items where Author is "Glocker, B."

Up a level
Group by: Type | No Grouping
Number of items: 6.

Lekadir, K. ORCID: 0000-0002-9456-1612, Frangi, A. F., Porras, A. R. (2025). FUTURE-AI: international consensus guideline for trustworthy and deployable artificial intelligence in healthcare. BMJ, 388, article number e081554. doi: 10.1136/bmj-2024-081554

Wang, S., Tarroni, G. ORCID: 0000-0002-0341-6138, Qin, C. (2020). Deep Generative Model-based Quality Control for Cardiac MRI Segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. 23rd International Conference on Medical Image Computing and Computer Assisted Intervention, 04 - 08 October 2020, Lima, Peru. doi: 10.1007/978-3-030-59719-1_9

Tarroni, G. ORCID: 0000-0002-0341-6138, Bai, W., Oktay, O. (2020). Large-scale Quality Control of Cardiac Imaging in Population Studies: Application to UK Biobank. Scientific Reports, 10(1), article number 2408. doi: 10.1038/s41598-020-58212-2

Tarroni, G. ORCID: 0000-0002-0341-6138, Oktay, O., Bai, W. (2019). Learning-based quality control for cardiac MR images. IEEE Transactions on Medical Imaging, 38(5), pp. 1127-1138. doi: 10.1109/tmi.2018.2878509

Bai, W., Sinclair, M., Tarroni, G. ORCID: 0000-0002-0341-6138 (2018). Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. Journal of Cardiovascular Magnetic Resonanc, 20(1), article number 65. doi: 10.1186/s12968-018-0471-x

Al-Arif, S. M., Gundry, M., Knapp, K. (2017). Improving an Active Shape Model with Random Classification Forest for Segmentation of Cervical Vertebrae. In: Yao, J., Vrtovec, T., Zheng, G. (Eds.), Improving an Active Shape Model with Random Classification Forest for Segmentation of Cervical Vertebrae. Lecture Notes in Computer Science, 10182. (pp. 3-15). Cham: Springer.

This list was generated on Tue May 6 05:00:19 2025 UTC.