Up a level |

Group by: Type | No Grouping

Number of items: **8**.

Eisele, F. ORCID: 0000-0001-8267-2094 and Raedschelders, T. (2020).
On solvability of the first Hochschild cohomology of a finite-dimensional algebra.
*Transactions of the American Mathematical Society*,
doi: 10.1090/tran/8064

Eaton, C. W., Eisele, F. ORCID: 0000-0001-8267-2094 and Livesey, M. (2019).
Donovan’s conjecture, blocks with abelian defect groups and discrete valuation rings.
*Mathematische Zeitschrift*,
doi: 10.1007/s00209-019-02354-1

Eisele, F. ORCID: 0000-0001-8267-2094, Janssens, G. and Raedschelders, T. (2018).
A reduction theorem for tau -rigid modules.
*Mathematische Zeitschrift*, 290(3-4),
pp. 1377-1413.
doi: 10.1007/s00209-018-2067-4

Eisele, F. ORCID: 0000-0001-8267-2094 and Margolis, L. (2018).
A counterexample to the first Zassenhaus conjecture.
*Adavances in Mathematics*, 339,
pp. 599-641.
doi: 10.1016/j.aim.2018.10.004

Eisele, F. ORCID: 0000-0001-8267-2094 (2016).
Blocks with a generalized quaternion defect group and three simple modules over a 2-adic ring.
*Journal of Algebra*, 456,
pp. 294-322.
doi: 10.1016/j.jalgebra.2016.03.010

Eisele, F. ORCID: 0000-0001-8267-2094 and Livesey, M. (2020).
*Arbitrarily large Morita Frobenius numbers*.
City, University of London.

Eisele, F. ORCID: 0000-0001-8267-2094 (2020).
*On the geometry of lattices and finiteness of Picard groups*.
.

Eisele, F. ORCID: 0000-0001-8267-2094 (2020).
*The Picard group of an order and Külshammer reduction*.
.