City Research Online

Items where City Author is "Rui, Zhu"

Up a level
Export as [feed] RSS 2.0 [feed] RSS
Group by: Type | No Grouping
Number of items: 16.

Article

Lu, X., Qiao, Y., Zhu, R. ORCID: 0000-0002-9944-0369, Wang, G., Ma, Z. and Xue, J-H. (2021). Generalisations of stochastic supervision models. Pattern Recognition, 109, 107575.. doi: 10.1016/j.patcog.2020.107575

Sogi, N., Zhu, R. ORCID: 0000-0002-9944-0369, Xue, J-H. and Fukui, K. (2021). Constrained mutual convex cone method for image set based recognition. Pattern Recognition, 121, 108190. doi: 10.1016/j.patcog.2021.108190

Zhu, R. ORCID: 0000-0002-9944-0369 and W├╝thrich, M. V. (2020). Clustering driving styles via image processing. Annals of Actuarial Science, doi: 10.1017/S1748499520000317

Zhu, R. ORCID: 0000-0002-9944-0369, Guo, Y. and Xue, J-H. (2020). Adjusting the imbalance ratio by the dimensionality of imbalanced data. Pattern Recognition Letters, 133, pp. 217-223. doi: 10.1016/j.patrec.2020.03.004

Zhu, R., Wang, Z., Sogi, N., Fukui, K. and Xue, J-H. (2019). A Novel Separating Hyperplane Classification Framework to Unify Nearest-class-model Methods for High-dimensional Data. IEEE Transactions on Neural Networks and Learning Systems, doi: 10.1109/TNNLS.2019.2946967

Yang, W., Zhou, F., Zhu, R. ORCID: 0000-0002-9944-0369, Fukui, K., Wang, G. and Xue, J-H. (2019). Deep learning for image super-resolution. Neurocomputing, doi: 10.1016/j.neucom.2019.09.091

Zhu, R. ORCID: 0000-0002-9944-0369, Dong, M. and Xue, J-H. (2018). Learning distance to subspace for the nearest subspace methods in high-dimensional data classification. Information Sciences, 481, pp. 69-80. doi: 10.1016/j.ins.2018.12.061

Zhu, R. ORCID: 0000-0002-9944-0369, Wang, Z., Ma, Z., Wang, G. and Xue, J-H. (2018). LRID: A new metric of multi-class imbalance degree based on likelihood-ratio test. Pattern Recognition Letters, 116, pp. 36-42. doi: 10.1016/j.patrec.2018.09.012

Zhu, R., Zhou, F., Yang, W. and Xue, J-H. (2018). On Hypothesis Testing for Comparing Image Quality Assessment Metrics [Tips & Tricks]. IEEE Signal Processing Magazine, 35(4), pp. 133-136. doi: 10.1109/MSP.2018.2829209

Wang, Z., Zhu, R. ORCID: 0000-0002-9944-0369, Fukui, K. and Xue, J-H. (2018). Cone-based joint sparse modelling for hyperspectral image classification. Signal Processing, 144, pp. 417-429. doi: 10.1016/j.sigpro.2017.11.001

Zhu, R. ORCID: 0000-0002-9944-0369, Zhou, F. and Xue, J-H. (2018). MvSSIM: A quality assessment index for hyperspectral images. Neurocomputing, 272, pp. 250-257. doi: 10.1016/j.neucom.2017.06.073

Zhu, R. ORCID: 0000-0002-9944-0369 and Xue, J-H. (2017). On the orthogonal distance to class subspaces for high-dimensional data classification. Information Sciences, 417, pp. 262-273. doi: 10.1016/j.ins.2017.07.019

Wang, Z., Zhu, R., Fukui, K. and Xue, J-H. (2017). Matched Shrunken Cone Detector (MSCD): Bayesian Derivations and Case Studies for Hyperspectral Target Detection. IEEE Transactions on Image Processing, 26(11), pp. 5447-5461. doi: 10.1109/TIP.2017.2740621

Zhu, R. ORCID: 0000-0002-9944-0369, Fukui, K. and Xue, J-H. (2017). Building a discriminatively ordered subspace on the generating matrix to classify high-dimensional spectral data. Information Sciences, 382, pp. 1-14. doi: 10.1016/j.ins.2016.12.001

Zhu, R. ORCID: 0000-0002-9944-0369, Dong, M. and Xue, J-H. (2014). Spectral non-local restoration of hyperspectral images with low-rank property. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6), pp. 3062-3067. doi: 10.1109/JSTARS.2014.2370062

Working Paper

Asimit, V. ORCID: 0000-0002-7706-0066, Kyriakou, I. ORCID: 0000-0001-9592-596X, Santoni, S. ORCID: 0000-0002-5928-3901, Scognamiglio, S. and Zhu, R. ORCID: 0000-0002-9944-0369 (2021). Robust Classification via Support Vector Machines. .

This list was generated on Tue Sep 28 04:39:38 2021 UTC.