Revisiting the particle size effects in centrifuge modelling

Nadimi, S., Fonseca, J., Barreto, D. & Taylor, R.N. (2016). Revisiting the particle size effects in centrifuge modelling. Paper presented at the The 3rd European Conference on Physical Modelling in Geotechnics, 1-3 Jun 2016, Nantes, France.

[img]
Preview
Text - Published Version
Available under License : See the attached licence file.

Download (662kB) | Preview
[img]
Preview
Text (Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence) - Other
Download (201kB) | Preview

Abstract

Geotechnical centrifuge modelling provides an opportunity to examine novel and complex events in a well-controlled and repeatable environment. While grain interaction and contact dynamics are considered in centrifuge modelling, the soil is treated as a continuum, consistent with standard geotechnical analysis. In the last four decades, particle size effects have been normally approached by the ratio of median particle diameter to critical dimension of modelled structure. The current study considers the response of a granular medium in a centrifuge model by coupling physical tests and equivalent discrete element simulations. The response of a strip footing on uniformly graded glass ballotini is investigated. This is chosen as the sample characteristics can be accurately replicated in a discrete element simulation. Particle size distribution, gravity and footing width are scaled in the context of model-the-model technique and the sensitivity of the bulk response to rapid increase in stress level is explored. This will help establishing the link between the micro phenomena and the macro response and contribute towards improving geotechnical design. The paper describes the work conducted to overcome challenges related to physical modelling including particle mixing, sample preparation, image analysis, and loading apparatus.

Item Type: Conference or Workshop Item (Paper)
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Divisions: School of Engineering & Mathematical Sciences > Engineering
URI: http://openaccess.city.ac.uk/id/eprint/14875

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics