City Research Online

In-Sample Forecasting with Local Linear Survival Densities

Hiabu, M., Mammen, E., Martinez-Miranda, M. D. & Nielsen, J. P. (2016). In-Sample Forecasting with Local Linear Survival Densities. Biometrika, 103(4), pp. 843-859. doi: 10.1093/biomet/asw038

Abstract

In this paper, in-sample forecasting is defined as forecasting a structured density to sets where it is unobserved. The structured density consists of one-dimensional in-sample components that identify the density on such sets. We focus on the multiplicative density structure, which has recently been seen as the underlying structure of non-life insurance forecasts. In non-life insurance the in-sample area is defined as one triangle and the forecasting area as the triangle that 20 added to the first triangle produces a square. Recent approaches estimate two one-dimensional components by projecting an unstructured two-dimensional density estimator onto the space of multiplicatively separable functions. We show that time-reversal reduces the problem to two one-dimensional problems, where the one-dimensional data are left-truncated and a one-dimensional survival density estimator is needed. This paper then uses the local linear density smoother with 25 weighted cross-validated and do-validated bandwidth selectors. Full asymptotic theory is provided, with and without time reversal. Finite sample studies and an application to non-life insurance are included.

Publication Type: Article
Additional Information: This is a pre-copyedited, author-produced PDF of an article accepted for publication in Biometrika, following peer review. The version of record Munir, H., Mammen, E., Martinez-Miranda, M. D. & Nielsen, J. P. (2016). In-Sample Forecasting with Local Linear Survival Densities. Biometrika, will be available online at: http://biomet.oxfordjournals.org/
Publisher Keywords: Aalen’s multiplicative model; Cross-validation; Do-validation; Density estimation; Local linear kernel estimation; Survival data
Subjects: H Social Sciences > HA Statistics
Departments: Bayes Business School > Actuarial Science & Insurance
SWORD Depositor:
[thumbnail of HMMN_rev5.pdf]
Preview
Text - Accepted Version
Download (333kB) | Preview

Export

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login