CastroAlvaredo, O. & Miramontes, J. L. (2000). Massive symmetric space sineGordon soliton theories and perturbed conformal field theory. Nuclear Physics B, 581(3), pp. 643678. doi: 10.1016/S05503213(00)002480

PDF
Download (413kB)  Preview 
Abstract
The perturbed conformal field theories corresponding to the massive Symmetric Space sineGordon soliton theories are identified by calculating the central charge of the unperturbed conformal field theory and the conformal dimension of the perturbation. They are described by an action with a positivedefinite kinetic term and a real potential term bounded from below, their equations of motion are nonabelian affine Toda equations and, moreover, they exhibit a mass gap. The unperturbed CFT corresponding to the compact symmetric space G/G_0 is either the WZNW action for G_0 or the gauged WZNW action for a coset of the form G_0/U(1)^p. The quantum integrability of the theories that describe perturbations of a WZNW action, named Split models, is established by showing that they have quantum conserved quantities of spin +3 and 3. Together with the already known results for the other massive theories associated with the nonabelian affine Toda equations, the Homogeneous sineGordon theories, this supports the conjecture that all the massive Symmetric Space sineGordon theories will be quantum integrable and, hence, will admit a factorizable Smatrix. The general features of the soliton spectrum are discussed, and some explicit soliton solutions for the Split models are constructed. In general, the solitons will carry both topological charges and abelian Noether charges. Moreover, the spectrum is expected to include stable and unstable particles.
Item Type:  Article 

Additional Information:  hepth/000221 
Uncontrolled Keywords:  Completely integrable systems; Solitons; Nonabelian affine Toda theory; Perturbed conformal field theory; Symmetric spaces 
Subjects:  Q Science > QC Physics 
Divisions:  School of Engineering & Mathematical Sciences > Department of Mathematical Science 
URI:  http://openaccess.city.ac.uk/id/eprint/727 
Actions (login required)
View Item 
Downloads
Downloads per month over past year