Monad Bundles in Heterotic String Compactifications

Anderson, L. B., He, Y. & Lukas, A. (2008). Monad Bundles in Heterotic String Compactifications. Journal of High Energy Physics, 2008(JHEP07), p. 104. doi: 10.1088/1126-6708/2008/07/104

Download (394kB) | Preview


In this paper, we study positive monad vector bundles on complete intersection Calabi-Yau manifolds in the context of E8 × E8 heterotic string compactifications. We show that the class of such bundles, subject to the heterotic anomaly condition, is finite and consists of about 7000 models. We explain how to compute the complete particle spectrum for these models. In particular, we prove the absence of vector-like family anti-family pairs in all cases. We also verify a set of highly non-trivial necessary conditions for the stability of the bundles. A full stability proof will appear in a companion paper. A scan over all models shows that even a few rudimentary physical constraints reduces the number of viable models drastically.

Item Type: Article
Uncontrolled Keywords: Superstrings and Heterotic Strings, Differential and Algebraic Geometry, Superstring Vacua
Subjects: Q Science > QC Physics
Divisions: School of Engineering & Mathematical Sciences > Department of Mathematical Science

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics