Tough Tables: Carefully Evaluating Entity Linking for Tabular Data
Cutrona, V., Bianchi, F., Jimenez-Ruiz, E. ORCID: 0000-0002-9083-4599 & Palmonari, M. (2020). Tough Tables: Carefully Evaluating Entity Linking for Tabular Data. In: The Semantic Web – ISWC 2020. The 19th International Semantic Web Conference, 2-6 Nov 2020, Athens, Greece. doi: 10.1007/978-3-030-62466-8_21
Abstract
Table annotation is a key task to improve querying the Web and support the Knowledge Graph population from legacy sources (tables). Last year, the SemTab challenge was introduced to unify different efforts to evaluate table annotation algorithms by providing a common interface and several general-purpose datasets as a ground truth. The SemTab dataset is useful to have a general understanding of how these algorithms work, and the organizers of the challenge included some artificial noise to the data to make the annotation trickier. However, it is hard to analyze specific aspects in an automatic way. For example, the ambiguity of names at the entity-level can largely affect the quality of the annotation. In this paper, we propose a novel dataset to complement the datasets proposed by SemTab. The dataset consists of a set of high-quality manually-curated tables with non-obviously linkable cells, i.e., where values are ambiguous names, typos, and misspelled entity names not appearing in the current version of the SemTab dataset. These challenges are particularly relevant for the ingestion of structured legacy sources into existing knowledge graphs. Evaluations run on this dataset show that ambiguity is a key problem for entity linking algorithms and encourage a promising direction for future work in the field.
Publication Type: | Conference or Workshop Item (Paper) |
---|---|
Additional Information: | Accepted paper will be published by Springer as part of the Lecture Notes in Computer Science series. |
Publisher Keywords: | Entity Linking, � Instance-level matching, � Cell Entity Annotation, � Semantic Labeling,� Table annotation |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Departments: | School of Science & Technology > Computer Science |
Download (369kB) | Preview
Export
Downloads
Downloads per month over past year