City Research Online

Flow visualisation in real-size optical injectors of conventional, additised, and renewable gasoline blends

Heidari-Koochi, M. ORCID: 0000-0001-9865-697X, Karathanassis, I. K. ORCID: 0000-0001-9025-2866, Koukouvinis, P. ORCID: 0000-0002-3945-3707 , Hwang, J., Pickett, L. M., Spivey, D. & Gavaises, M. ORCID: 0000-0003-0874-8534 (2022). Flow visualisation in real-size optical injectors of conventional, additised, and renewable gasoline blends. Energy Conversion and Management, 252, 115109. doi: 10.1016/j.enconman.2021.115109

Abstract

Research on renewable and alternative fuels is crucial for improving the energy and environmental efficiency of modern gasoline internal combustion engines. To highlight the influence of fuel rheological and thermodynamic properties on phase change and atomisation processes, three types of gasoline blends were tested. More specifically, the campaign comprised a reference gasoline, an ethanol/gasoline blend (10% v/v) representative of renewable fuels, and an additised gasoline sample treated with viscoelasticity-inducing agents. High-speed imaging of the transient two-phase flow field arising in the internal geometry and the near-nozzle spray region of gasoline injectors was performed employing Diffuse Backlight Illumination. The metallic body of a commercial injector was modified to fit transparent tips realising two nozzle layouts, namely a two-hole real size model resembling the Engine Combustion Network spray G injector and an enraged replica with an offset hole. Experiments were conducted at realistic operating conditions comprising an injection pressure of 100 bar and ambient pressures in the range of 0.1–6.0 bar to cover the entire range of chamber pressures prevailing in Gasoline Direct Injection engines. The action of viscoelastic additives was verified to have a suppressive effect on in-nozzle cavitation (6% reduction in cavitation extent) , while also enhancing spray atomisation at flash-boing conditions, in a manner resembling the more volatile gasoline/ethanol blends. Finally, persisting liquid ligaments were found to form after the end of injection for the additised sample, owing to the surfactant nature of the additives.

Publication Type: Article
Additional Information: © 2021. This article has been accepted for publication in Energy Conversion and Management by Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
Publisher Keywords: GDI engine, Diffuse Backlight Illumination, high-speed imaging, viscoelastic flow, gasoline/ethanol blend
Subjects: T Technology > TD Environmental technology. Sanitary engineering
T Technology > TJ Mechanical engineering and machinery
T Technology > TL Motor vehicles. Aeronautics. Astronautics
Departments: School of Mathematics, Computer Science & Engineering > Engineering > Mechanical Engineering & Aeronautics
[img]
Preview
Text - Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (7MB) | Preview
[img] Text - Accepted Version
This document is not freely accessible due to copyright restrictions.
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Export

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login