Pulse Rate Variability for the Assessment of Cardiovascular Changes
Mejía-Mejía, E. (2023). Pulse Rate Variability for the Assessment of Cardiovascular Changes. (Unpublished Doctoral thesis, City, University of London)
Abstract
Pulse rate variability (PRV) describes the way pulse rate changes through time and is measured from pulsatile signals such as the photoplethysmogram (PPG). It has been proposed as a surrogate for heart rate variability (HRV). Nonetheless, the relationship between these variables is not entirely clear, probably due to both physiological and technical aspects involved in the extraction of PRV. Moreover, the effects of cardiovascular changes on PRV have not been elucidated. In this thesis, four studies were performed to (1) determine the best combination of some technical aspects for the extraction of PRV from PPG signals; (2) evaluate the relationship between PRV and HRV under different cardiovascular conditions; and (3) explore the effects of cardiovascular changes on PRV.
First, PRV extraction gave lower errors when (1) signals were acquired for at least 120 s with a 256 Hz sampling rate and filtered with lower low cut-off frequencies and elliptic, equiripple or Parks-McClellan filter; (2) cardiac cycles were determined using the D2max algorithm and the a fiducial points; and (3) the Fast Fourier Transform was applied to obtain frequency spectra. Secondly, the relationship between HRV and PRV was found to be affected by cold exposure and changes in blood pressure, while PRV was found to be different at different body sites. Finally, PRV was affected by haemodynamic changes, such as target flow, stroke rate and blood pressure, both in an in-vitro model and in-vivo data. Additionally, PRV was found to be a potential tool for the estimation of blood pressure, with errors as low as 1:54 ± 0:17 mmHg, 1:07 ± 0:06 mmHg and 1:22 ± 0:09 mmHg for the estimation of systolic, diastolic and mean arterial pressure.
Although more studies are needed to fully understand PRV and its clinical potential, PRV should not be regarded as the same as HRV, and it could be consider as a potential valuable biomarker for cardiovascular health.
Publication Type: | Thesis (Doctoral) |
---|---|
Subjects: | Q Science > QH Natural history > QH301 Biology R Medicine |
Departments: | School of Science & Technology Doctoral Theses |
Download (46MB) | Preview
Export
Downloads
Downloads per month over past year