Hydrodynamic analysis of a novel multi-buoy wind-wave energy system
Li, Y., Yan, S. ORCID: 0000-0001-8968-6616, Shi, H. , Ma, Q. ORCID: 0000-0001-5579-6454, Li, D. & Cao, F. (2023). Hydrodynamic analysis of a novel multi-buoy wind-wave energy system. Renewable Energy, 219(1), article number 119477. doi: 10.1016/j.renene.2023.119477
Abstract
Hybrid wind-wave systems combining the wave energy converters (WECs) with offshore wind turbines (OWTs) is a promising way to enhance the power production and improve the sea space utilization. In this paper, a novel hybrid wind-wave conceptual system, in which a multi-buoy WEC is integrated with a fixed monopile OWT, is proposed. This is the first concept utilizing multi-buoy WECs and is distinguished from existing hybrid wind-wave systems with a fixed monopile OWT, which integrate a single oscillating water column or a heaving point absorber. To characterize the hydrodynamics associated with the proposed system in operational wave conditions with different directionalities, a potential flow solver with an appropriate power take-off (PTO) model is applied. The results demonstrate a significant buoy-buoy and buoy-monopile hydrodynamic interaction, suggesting that the existing hydrodynamic characteristics for the wind-wave system with a single buoy WEC may not be applicable to the new system. More importantly, the power performance of the present system is proven to be better than the corresponding single-buoy wind-wave system, as being quantitatively assessed by the newly-defined evaluation index within the range of the consideration of this paper.
Publication Type: | Article |
---|---|
Additional Information: | © 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/(opens in new tab/window) |
Publisher Keywords: | Wave energy converter, Offshore wind turbine, Hybrid wind-wave system, Numerical simulation, Hydrodynamic characteristics |
Subjects: | G Geography. Anthropology. Recreation > GE Environmental Sciences T Technology > TA Engineering (General). Civil engineering (General) V Naval Science > VM Naval architecture. Shipbuilding. Marine engineering |
Departments: | School of Science & Technology > Engineering |
SWORD Depositor: |
Available under License Creative Commons Attribution Non-commercial No Derivatives.
Download (2MB) | Preview
Export
Downloads
Downloads per month over past year