City Research Online

Loss Analysis in Radial Inflow Turbines for Supercritical CO2 Mixtures

Aqel, O., White, M. ORCID: 0000-0002-7744-1993 & Sayma, A. ORCID: 0000-0003-2315-0004 (2024). Loss Analysis in Radial Inflow Turbines for Supercritical CO2 Mixtures. Journal of Turbomachinery, 146(5), article number 051003. doi: 10.1115/1.4064193

Abstract

Recent studies suggest that CO2 mixtures can reduce the costs of concentrated solar power plants. Radial inflow turbines (RIT) are considered suitable for small to medium-sized CO2 power plants (100 kW to 10 MW) due to aerodynamic and cost factors. This paper quantifies the impact of CO2 doping on RIT design by comparing 1D mean-line designs and aerodynamic losses of pure CO2 RITs with three CO2 mixtures: titanium tetrachloride (TiCl4), sulfur dioxide (SO2), and hexafluorobenzene (C6F6). Results show that turbine designs share similar rotor shapes and velocity diagrams for all working fluids. However, factors like clearance-to-blade height ratio, turbine pressure ratio, and fluid viscosity cause differences in turbine efficiency. When normalized for these factors, differences in total-to-static efficiency become less than 0.1%. However, imposing rotational speed limits reveals greater differences in turbine designs and efficiencies. The imposition of rotational speed limits reduces total-to-static efficiency across all fluids, with a maximum 15% reduction in 0.1 MW CO2 compared to a 3% reduction in CO2/TiCl4 turbines of the same power. Among the studied mixtures, CO2/TiCl4 turbines achieve the highest efficiency, followed by CO2/C6F6 and CO2/SO2. For example, 100 kW turbines achieve total-to-static efficiencies of 80.0%, 77.4%, 78.1%, and 75.5% for CO2/TiCl4, CO2/C6F6, CO2/SO2, and pure CO2, respectively. In 10 MW turbines, efficiencies are 87.8%, 87.3%, 87.5%, and 87.2% in the same order.

Publication Type: Article
Additional Information: Copyright © 2024 by ASME; reuse license CC-BY 4.0.
Publisher Keywords: radial inflow turbine, CO2 mixtures, transcritical CO2 cycles, turbine aerodynamic design, loss analysis
Subjects: T Technology > TJ Mechanical engineering and machinery
T Technology > TL Motor vehicles. Aeronautics. Astronautics
Departments: School of Science & Technology
School of Science & Technology > Engineering
SWORD Depositor:
[thumbnail of turbo_146_5_051003.pdf]
Preview
Text - Published Version
Available under License Creative Commons: Attribution International Public License 4.0.

Download (1MB) | Preview

Export

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login