City Research Online

Insights from EEG analysis of evoked memory recalls using deep learning for emotion charting

Dar, M. N., Akram, M. U., Subhani, A. R. , Khawaja, S. G., Reyes-Aldasoro, C. C. ORCID: 0000-0002-9466-2018 & Gul, S. (2024). Insights from EEG analysis of evoked memory recalls using deep learning for emotion charting. Scientific Reports, 14, article number 17080. doi: 10.1038/s41598-024-61832-7

Abstract

Affect recognition in a real-world, less constrained environment is the principal prerequisite of the industrial-level usefulness of this technology. Monitoring the psychological profile using smart, wearable electroencephalogram (EEG) sensors during daily activities without external stimuli, such as memory-induced emotions, is a challenging research gap in emotion recognition. This paper proposed a deep learning framework for improved memory-induced emotion recognition leveraging a combination of 1D-CNN and LSTM as feature extractors integrated with an Extreme Learning Machine (ELM) classifier. The proposed deep learning architecture, combined with the EEG preprocessing, such as the removal of the average baseline signal from each sample and extraction of EEG rhythms (delta, theta, alpha, beta, and gamma), aims to capture repetitive and continuous patterns for memory-induced emotion recognition, underexplored with deep learning techniques. This work has analyzed EEG signals using a wearable, ultra-mobile sports cap while recalling autobiographical emotional memories evoked by affect-denoting words, with self-annotation on the scale of valence and arousal. With extensive experimentation using the same dataset, the proposed framework empirically outperforms existing techniques for the emerging area of memory-induced emotion recognition with an accuracy of 65.6%. The EEG rhythms analysis, such as delta, theta, alpha, beta, and gamma, achieved 65.5%, 52.1%, 65.1%, 64.6%, and 65.0% accuracies for classification with four quadrants of valence and arousal. These results underscore the significant advancement achieved by our proposed method for the real-world environment of memory-induced emotion recognition.

Publication Type: Article
Additional Information: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Publisher Keywords: Emotional memory recall, Electroencephalogram (EEG), Ultra-mobile wearable sensor, Memory-induced emotion recognition, Affective words
Subjects: B Philosophy. Psychology. Religion > BF Psychology
T Technology > TA Engineering (General). Civil engineering (General)
Departments: School of Science & Technology
School of Science & Technology > Computer Science
SWORD Depositor:
[thumbnail of Insights from EEG analysis of evoked memory recalls using deep learning for emotion charting.pdf]
Preview
Text - Published Version
Available under License Creative Commons: Attribution International Public License 4.0.

Download (3MB) | Preview

Export

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login