City Research Online

A Novel Wavelet Transform and Deep Learning-Based Algorithm for Low-Latency Internet Traffic Classification

Enisoglu, R. & Rakocevic, V. ORCID: 0000-0002-3081-0448 (2025). A Novel Wavelet Transform and Deep Learning-Based Algorithm for Low-Latency Internet Traffic Classification. Algorithms, 18(8), article number 457. doi: 10.3390/a18080457

Abstract

Accurate and real-time classification of low-latency Internet traffic is critical for applications such as video conferencing, online gaming, financial trading, and autonomous systems, where millisecond-level delays can degrade user experience. Existing methods for low-latency traffic classification, reliant on raw temporal features or static statistical analyses, fail to capture dynamic frequency patterns inherent to real-time applications. These limitations hinder accurate resource allocation in heterogeneous networks. This paper proposes a novel framework integrating wavelet transform (WT) and artificial neural networks (ANNs) to address this gap. Unlike prior works, we systematically apply WT to commonly used temporal features—such as throughput, slope, ratio, and moving averages—transforming them into frequency-domain representations. This approach reveals hidden multi-scale patterns in low-latency traffic, akin to structured noise in signal processing, which traditional time-domain analyses often overlook. These wavelet-enhanced features train a multilayer perceptron (MLP) ANN, enabling dual-domain (time–frequency) analysis. We evaluate our approach on a dataset comprising FTP, video streaming, and low-latency traffic, including mixed scenarios with up to four concurrent traffic types. Experiments demonstrate 99.56% accuracy in distinguishing low-latency traffic (e.g., video conferencing) from FTP and streaming, outperforming k-NN, CNNs, and LSTMs. Notably, our method eliminates reliance on deep packet inspection (DPI), offering ISPs a privacy-preserving and scalable solution for prioritizing time-sensitive traffic. In mixed-traffic scenarios, the model achieves 74.2–92.8% accuracy, offering ISPs a scalable solution for prioritizing time-sensitive traffic without deep packet inspection. By bridging signal processing and deep learning, this work advances efficient bandwidth allocation and enables Internet Service Providers to prioritize time-sensitive flows without deep packet inspection, improving quality of service in heterogeneous network environments.

Publication Type: Article
Additional Information: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Publisher Keywords: network traffic classification, artificial neural network, wavelet transform, feature selection, internet traffic mix, statistical features, QoS, low latency
Subjects: Q Science > QA Mathematics
Departments: School of Science & Technology
School of Science & Technology > Department of Engineering
SWORD Depositor:
[thumbnail of algorithms-18-00457.pdf]
Preview
Text - Published Version
Available under License Creative Commons Attribution.

Download (722kB) | Preview

Export

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login