City Research Online

Items where Author is "Banerjee, J. R."

Up a level
Group by: Type | No Grouping
Jump to: Article | Thesis
Number of items: 41.

Article

Som, R., Manna, S. & Banerjee, J. R. (2024). Propagation of bending waves along the edge of a point-loaded piezoelectric plate on elastic foundation. Mechanics of Advanced Materials and Structures, doi: 10.1080/15376494.2024.2413186

Banerjee, J. R. (2024). Coupled axial-flexural buckling of shear deformable columns using an exact stiffness matrix. Computers & Structures, 298, article number 107349. doi: 10.1016/j.compstruc.2024.107349

Banerjee, J. R. (2024). An exact method for free vibration of beams and frameworks using frequency-dependent mass, elastic and geometric stiffness matrices. Computers & Structures, 292, article number 107235. doi: 10.1016/j.compstruc.2023.107235

Papkov, S. O. & Banerjee, J. R. (2023). A New Method for Free Vibration Analysis of Triangular Isotropic and Orthotropic Plates of Isosceles Type Using an Accurate Series Solution. Mathematics, 11(3), article number 649. doi: 10.3390/math11030649

Banerjee, J. R. (2022). Free Vibration of Timoshenko–Ehrenfest Beams and Frameworks Using Frequency-Dependent Mass and Stiffness Matrices. Journal of Vibration and Acoustics, 144(6), article number 064501. doi: 10.1115/1.4055133

Banerjee, J. R., Kennedy, D. & Elishakoff, I. (2022). Further Insights Into the Timoshenko–Ehrenfest Beam Theory. Journal of Vibration and Acoustics, 144(6), article number 061011. doi: 10.1115/1.4055974

Papkov, S. O. & Banerjee, J. R. (2022). Dynamic stiffness formulation for isotropic and orthotropic plates with point nodes. Computers & Structures, 270, article number 106827. doi: 10.1016/j.compstruc.2022.106827

Wahrhaftig, A. D. M., Magalhães, K. M. M., Silva, M. A. , da Fonseca Brasil, R. M. L. R. & Banerjee, J. R. (2022). Buckling and free vibration analysis of non-prismatic columns using optimized shape functions and Rayleigh method. European Journal of Mechanics, A/Solids, 94, article number 104543. doi: 10.1016/j.euromechsol.2022.104543

Liu, X., Lu, Z., Adhikari, S. , Li, Y. L. & Banerjee, J. R. (2022). Exact wave propagation analysis of lattice structures based on the dynamic stiffness method and the Wittrick–Williams algorithm. Mechanical Systems and Signal Processing, 174, article number 109044. doi: 10.1016/j.ymssp.2022.109044

Liu, X., Zhao, Y., Zhou, W. & Banerjee, J. R. (2022). Dynamic stiffness method for exact longitudinal free vibration of rods and trusses using simple and advanced theories. Applied Mathematical Modelling, 104, pp. 401-420. doi: 10.1016/j.apm.2021.11.023

Banerjee, J. R. (2021). Frequency dependent mass and stiffness matrices of bar and beam elements and their equivalency with the dynamic stiffness matrix. Computers and Structures, 254, article number 106616. doi: 10.1016/j.compstruc.2021.106616

Papkov, S. O. & Banerjee, J. R. (2021). Free vibration of thick rectangular orthotropic plates with clamped edges- using asymptotic analysis of infinite systems. Journal of Sound and Vibration, 508, article number 116209. doi: 10.1016/j.jsv.2021.116209

Ali, M. I., Azam, M. S., Ranjan, V. & Banerjee, J. R. (2020). Free vibration of sigmoid functionally graded plates using the dynamic stiffness method and the Wittrick-Williams algorithm. Computers and Structures, 244, article number 106424. doi: 10.1016/j.compstruc.2020.106424

Banerjee, J. R., Ananthapuvirajah, A., Liu, X. & Sun, C. (2020). Coupled axial-bending dynamic stiffness matrix and its applications for a Timoshenko beam with mass and elastic axes eccentricity. Thin-Walled Structures, 159, article number 107197. doi: 10.1016/j.tws.2020.107197

Xie, L., Wang, S., Ding, J. , Banerjee, J. R. & Wang, J. (2020). An accurate beam theory and its first-order approximation in free vibration analysis. Journal of Sound and Vibration, 485, article number 115567. doi: 10.1016/j.jsv.2020.115567

Banerjee, J. R., Ananthapuvirajah, A. & Papkov, S. O. (2020). Dynamic stiffness matrix of a conical bar using the Rayleigh-Love theory with applications. European Journal of Mechanics - A/Solids, 83, article number 104020. doi: 10.1016/j.euromechsol.2020.104020

Banerjee, J. R. (2019). Review of the dynamic stiffness method for free-vibration analysis of beams. Transportation Safety and Environment, 1(2), pp. 106-116. doi: 10.1093/tse/tdz005

Papkov, S.O. & Banerjee, J. R. (2019). Dynamic stiffness formulation and free vibration analysis of specially orthotropic Mindlin plates with arbitrary boundary conditions. Journal of Sound and Vibration, 458, pp. 522-543. doi: 10.1016/j.jsv.2019.06.028

Banerjee, J. R. & Ananthapuvirajah, A. (2019). Commentary on, "Discussion on 'Free vibration of functionally graded beams and frameworks using the dynamic stiffness method' by Banerjee et al., Journal of Sound and Vibration 442 (2018) 34-47.". Journal of Sound and Vibration, 466, article number 114986. doi: 10.1016/j.jsv.2019.114986

Banerjee, J. R. & Ananthapuvirajah, A. (2019). Free flexural vibration of tapered beams. Computers & Structures, 224, article number 106106. doi: 10.1016/j.compstruc.2019.106106

Banerjee, J. R. (2019). Dewey Hodges’s Research in Structural Dynamics, Aeroelasticity, and Composites: A Personal Perspective. AIAA Journal, 57(10), pp. 4120-4124. doi: 10.2514/1.j057495

Banerjee, J. R. & Ananthapuvirajah, A. (2019). Coupled axial-bending dynamic stiffness matrix for beam elements. Computers and Structures, 215, pp. 1-9. doi: 10.1016/j.compstruc.2019.01.007

Banerjee, J. R. & Ananthapuvirajah, A. (2018). An exact dynamic stiffness matrix for a beam incorporating Rayleigh–Love and Timoshenko theories. International Journal of Mechanical Sciences, 150, pp. 337-347. doi: 10.1016/j.ijmecsci.2018.10.012

Banerjee, J. R. & Ananthapuvirajah, A. (2018). Free vibration of functionally graded beams and frameworks using the dynamic stiffness method. Journal of Sound and Vibration, 422, pp. 34-47. doi: 10.1016/j.jsv.2018.02.010

Liu, X. & Banerjee, J. R. (2017). A spectral dynamic stiffness method for free vibration analysis of plane elastodynamic problems. Mechanical Systems and Signal Processing, 87(4), pp. 136-160. doi: 10.1016/j.ymssp.2016.10.017

Banerjee, J. R. (2016). Modal analysis of sailplane and transport aircraft wings using the dynamic stiffness method. Journal of Physics: Conference Series, 721(1), article number 012005. doi: 10.1088/1742-6596/721/1/012005

Liu, X., Kassem, H. I. & Banerjee, J. R. (2016). An exact spectral dynamic stiffness theory for composite plate-like structures with arbitrary non-uniform elastic supports, mass attachments and coupling constraints. Composite Structures, 142, pp. 140-154. doi: 10.1016/j.compstruct.2016.01.074

Kassem, H. I., Liu, X. & Banerjee, J. R. (2016). Transonic flutter analysis using a fully coupled density based solver for inviscid flow. Advances in Engineering Software, 95, pp. 1-6. doi: 10.1016/j.advengsoft.2016.01.012

Liu, X. & Banerjee, J. R. (2016). Free vibration analysis for plates with arbitrary boundary conditions using a novel spectral-dynamic stiffness method. Computers and Structures, 164, pp. 108-126. doi: 10.1016/j.compstruc.2015.11.005

Liu, X. & Banerjee, J. R. (2015). An exact spectral-dynamic stiffness method for free flexural vibration analysis of orthotropic composite plate assemblies - Part I: Theory. Composite Structures, 132, pp. 1274-1287. doi: 10.1016/j.compstruct.2015.07.020

Banerjee, J. R., Papkov, S.O., Liu, X. & Kennedy, D. (2015). Dynamic stiffness matrix of a rectangular plate for the general case. JOURNAL OF SOUND AND VIBRATION, 342, pp. 177-199. doi: 10.1016/j.jsv.2014.12.031

Liu, X. & Banerjee, J. R. (2015). An exact spectral-dynamic stiffness method for free flexural vibration analysis of orthotropic composite plate assemblies - Part II: Applications. Composite Structures, 132, pp. 1288-1302. doi: 10.1016/j.compstruct.2015.07.022

Banerjee, J. R. & Kennedy, D. (2014). Dynamic stiffness method for inplane free vibration of rotating beams including Coriolis effects. Journal of Sound and Vibration, 333(26), pp. 7299-7312. doi: 10.1016/j.jsv.2014.08.019

Boscolo, M. & Banerjee, J. R. (2014). Layer-wise dynamic stiffness solution for free vibration analysis of laminated composite plates. Journal of Sound and Vibration, 333(1), pp. 200-227. doi: 10.1016/j.jsv.2013.08.031

Banerjee, J. R., Liu, X. & Kassem, H. I. (2014). Aeroelastic stability analysis of high aspect ratio aircraft wings. Journal of Applied Nonlinear Dynamics, 3(4), pp. 413-422. doi: 10.5890/jand.2014.12.012

Pagani, A., Boscolo, M., Banerjee, J. R. & Carrera, E. (2013). Exact dynamic stiffness elements based on one-dimensional higher-order theories for free vibration analysis of solid and thin-walled structures. Journal of Sound and Vibration, 332(23), pp. 6104-6127. doi: 10.1016/j.jsv.2013.06.023

Fazzolari, F. A., Banerjee, J. R. & Boscolo, M. (2013). Buckling of composite plate assemblies using higher order shear deformation theory-An exact method of solution. Thin-Walled Structures, 71, pp. 18-34. doi: 10.1016/j.tws.2013.04.017

Fazzolari, F. A., Boscolo, M. & Banerjee, J. R. (2013). An exact dynamic stiffness element using a higher order shear deformation theory for free vibration analysis of composite plate assemblies. Composite Structures, 96, pp. 262-278. doi: 10.1016/j.compstruct.2012.08.033

Boscolo, M. & Banerjee, J. R. (2012). Dynamic stiffness formulation for composite Mindlin plates for exact modal analysis of structures. Part I: Theory. Computers & Structures, 96-97, pp. 61-73. doi: 10.1016/j.compstruc.2012.01.002

Boscolo, M. & Banerjee, J. R. (2012). Dynamic stiffness formulation for composite Mindlin plates for exact modal analysis of structures. Part II: Results and applications. Computers & Structures, 96-97, pp. 74-83. doi: 10.1016/j.compstruc.2012.01.003

Thesis

Banerjee, J. R. (2015). Advances in structural dynamics, aeroelasticity and material science. (Unpublished Doctoral thesis, City University London)

This list was generated on Thu Dec 26 02:57:40 2024 UTC.