Items where Author is "King, A."
Article
Montesano, G., Ometto, G. ORCID: 0000-0002-0900-4847, King, A. , Garway-Heath, D. F. & Crabb, D. P. ORCID: 0000-0001-8611-1155 (2022). Two-year visual field outcomes of the treatment for advanced glaucoma study (TAGS). American Journal of Ophthalmology, 246, pp. 42-50. doi: 10.1016/j.ajo.2022.09.011
Robbins, E., King, A. & Howe, J. M. ORCID: 0000-0001-8013-6941 (2020). Backjumping is Exception Handling. Theory and Practice of Logic Programming, 21(2), pp. 125-144. doi: 10.1017/S1471068420000435
Howe, J. M. ORCID: 0000-0001-8013-6941, King, A. & Simon, A. (2019). Incremental closure for systems of two variables per inequality. Theoretical Computer Science, 768, pp. 1-42. doi: 10.1016/j.tcs.2018.12.001
Howe, J. M., Robbins, E. & King, A. (2017). Theory Learning with Symmetry Breaking. Proceedings of the 19th International Symposium on Principles and Practice of Declarative Programming, Part F, pp. 85-96. doi: 10.1145/3131851.3131861
Chuang, J., King, A. & Leinster, T. (2016). On the magnitude of a finite dimensional algebra. Theory and Applications of Categories, 31(3), pp. 63-72.
Robbins, E., Howe, J. M. & King, A. (2015). Theory propagation and reification. Science of Computer Programming, 111(P1), pp. 3-22. doi: 10.1016/j.scico.2014.05.013
Robbins, E., Howe, J. M. & King, A. (2013). Theory propagation and rational-trees. Proceedings of the 15th Symposium on Principles and Practice of Declarative Programming, PPDP 2013, pp. 193-204.
Howe, J. M. & King, A. (2012). A pearl on SAT and SMT solving in Prolog. Theoretical Computer Science, 435, pp. 43-55. doi: 10.1016/j.tcs.2012.02.024
Howe, J. M. & King, A. (2012). Polyhedral Analysis using Parametric Objectives. Lecture Notes on Computer Science, 7460, pp. 41-57. doi: 10.1007/978-3-642-33125-1_6
Howe, J. M. & King, A. (2011). A Pearl on SAT Solving in Prolog (extended abstract). ALP Newsletter(3),
Howe, J. M., King, A. & Lawrence-Jones, C. (2010). Quadtrees as an Abstract Domain. Electronic Notes Theoretical Computer Science, 267(1), pp. 89-100. doi: 10.1016/j.entcs.2010.09.008
Charles, P. J., Howe, J. M. & King, A. (2009). Integer polyhedra for program analysis. Algorithmic Aspects in Information and Management, Lecture Notes in Computer Science, 5564, pp. 85-99. doi: 10.1007/978-3-642-02158-9_9
Howe, J. M. & King, A. (2009). Logahedra: A new weakly relational domain. Lecture Notes in Computer Science, 5799, pp. 306-320. doi: 10.1007/978-3-642-04761-9_23
Howe, J. M. & King, A. (2003). Efficient groundness analysis in Prolog. Theory and Practice of Logic Programming, 3(1), pp. 95-124. doi: 10.1017/s1471068402001485
Simon, A., King, A. & Howe, J. M. (2003). Two variables per linear inequality as an abstract domain. Logic based program synthesis and transformation, 2664, pp. 71-89. doi: 10.1007/3-540-45013-0_7
Howe, J. M. & King, A. (2000). Abstracting Numeric Constraints with Boolean Functions. Information Processing Letters, 75(1-2), pp. 17-23. doi: 10.1016/s0020-0190(00)00081-8
Howe, J. M. & King, A. (2000). Implementing Groundness Analysis with Definite Boolean Functions. Lecture Notes in Computer Science, 1782, pp. 200-214.
Book Section
Howe, J. M. & King, A. (2010). A pearl on SAT solving in Prolog. In: International Symposium on Functional and Logic Programming, pages 165-174. Lecture Notes in Computer Science (6009). . Springer. doi: 10.1007/978-3-642-12251-4_13
Conference or Workshop Item
Howe, J. M. & King, A. (2001). Positive Boolean Functions as Multiheaded Clauses. In: Codognet, P (Ed.), LNCS. International Conference on Logic Programming, 26 Nov - 01 Dec 2001, Cyprus.
Howe, J. M. & King, A. (2000). Specialising finite domain programs with polyhedra. Paper presented at the Logic Programming Synthesis and Transformation 1999, 22 - 24 September 1999, Venezia, Italy.
Report
Howe, J. M., King, A. & Lawrence-Jones, C. (2010). Quadtrees as an Abstract Domain (TR_2010_DOC_01). .
Howe, J. M. & King, A. (2009). Closure Algorithms for Domains with Two Variables Per Inequality (TR/2009/DOC/01). .
Working Paper
Chuang, J. & King, A. Free resolutions of algebras. City, University of London.