%I
%S 41,156,304,462,630,834,1020,1214,1420,1618,1824,2076,2288,2514,2712,
%T 2926,3198,3460,3656,3874,4086,4370,4598,4888,5100,5346,5626,5886,
%U 6126,6332,6580,6836,7146,7386,7678,7848,8208,8560,8762,8962,9258,9498,9696
%N Sum of ordered 3 prime sided prime triangles.
%C An ordered 3 prime sided prime triangle is 6 consecutive primes arranged in an equilateral triangle of the form
%C ...........p(6n5)
%C .....p(6n4).....p(6n3)
%C .p(6n2)...p(6n1)......p(6n)
%e The first 3 prime sided prime triangle
%e 2
%e 3 5
%e 7 11 13
%e adds up to 41, the first entry.
%o (PARI) sumtri3x3(n) = { local(x,j,s); forstep(x=1,n,6, s = prime(x)+prime(x+1)+prime(x+2)+prime(x+3)+prime(x+4)+prime(x+5); print1(s",") ) }
%K easy,nonn
%O 1,1
%A _Cino Hilliard_, Apr 07 2005
