Starting jet flows in a three-dimensional channel with larynx-shaped constriction

Schwarze, R., Mattheus, W., Klostermann, J. & Brücker, C. (2011). Starting jet flows in a three-dimensional channel with larynx-shaped constriction. Computers and Fluids, 48(1), pp. 68-83. doi: 10.1016/j.compfluid.2011.03.016

[img]
Preview
Text - Accepted Version
Available under License : See the attached licence file.

Download (3MB) | Preview
[img]
Preview
Text (Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence) - Other
Download (201kB) | Preview

Abstract

A numerical model for the three-dimensional starting jet flow in a channel with a static larynx-shaped constriction is presented. Detailed resolution of this kind of jet flow is necessary in order to understand the complex coupling between flow and acoustics in the process of human phonation. The numerical model is based on the equation of continuity and the Navier-Stokes equations. The investigations are done with the open source CFD package OpenFOAM. Numerical simulations are performed for a square-sectioned channel geometry, which is constricted with a fixed shape conforming to the fully opened human glottis. Time-dependent inflow boundary conditions are applied in order to model transient glottal flow rates. The setup of the numerical simulations corresponds to the configuration of a model experiment in order to allow detailed validation. The numerical results are in good agreement with the experimental data, when the near-wall region in the glottal gap is adequately resolved by the numerical grid. The results illustrate the complex interactions between the jet flow and the surrounding vortices. © 2011 Elsevier Ltd.

Item Type: Article
Additional Information: © 2011 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Uncontrolled Keywords: Glottal airflow; Elliptic jet; Instability; Jet breakdown; Numerical simulation; Larynx-shaped channel; Starting jet flow; Numerical model; Validation
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Divisions: School of Engineering & Mathematical Sciences
URI: http://openaccess.city.ac.uk/id/eprint/12953

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics