Structure evolving systems and control in integrated design

Karcanias, N. (2008). Structure evolving systems and control in integrated design. Annual Reviews in Control, 32(2), pp. 161-182. doi: 10.1016/j.arcontrol.2008.07.004

[img]
Preview
Text - Accepted Version
Available under License : See the attached licence file.

Download (930kB) | Preview
[img]
Preview
Text (Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence) - Other
Download (201kB) | Preview

Abstract

Existing methods in Systems and Control deal predominantly with Fixed Systems, that have been designed in the past, and for which the control design has to be performed. The new paradigm of Structure Evolving Systems (SES), expresses a new form of system complexity where the components, interconnection topology, measurement-actuation schemes may not be fixed, the control scheme also may vary within the system-lifecycle and different views of the system of varying complexity may be required by the designer. Such systems emerge in many application domains and in the engineering context in problems such as integrated system design, integrated operations, re-engineering, lifecycle design issues, networks, etc. The paper focuses on the Integrated Engineering Design (IED), which is revealed as a typical structure evolution process that is strongly linked to Control Theory and Design type problems. It is shown, that the formation of the system, which is finally used for control design evolves during the earlier design stages and that process synthesis and overall instrumentation are critical stages of this evolutionary process that shapes the final system structure and thus the potential for control design. The paper aims at revealing the control theory context of the evolutionary mechanism in overall system design by defining a number of generic clusters of system structure evolution problems and by establishing links with existing areas of control theory. Different aspects of model evolution during the overall design are identified which include cases such as: (i) Time-dependent evolution of system models from “early” to “late” stages of design. (ii) Design stage-dependent evolution from conceptualisation to process synthesis and to overall instrumentation. (iii) Redesign of given systems and constrained system evolution. Within each cluster a number of well defined new Control Theory problems are introduced, which may be studied within the structural methodologies framework of Linear Systems. The problems posed have a general systems character, but the emphasis here is on Linear Systems; an overview of relevant results is given and links with existing research topics are established. The paper defines the Structural Control Theoretic context of an important family of complex systems emerging in engineering design and defines a new research agenda for structural methods of Control Theory.

Item Type: Article
Additional Information: © 2008, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Uncontrolled Keywords: Complex systems and control; Linear systems; Systems structure; Control theory; Evolving systems
Subjects: T Technology
Divisions: School of Engineering & Mathematical Sciences > Engineering
URI: http://openaccess.city.ac.uk/id/eprint/14045

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics