Knizhnik-Zamolodchikov equation and extended symmetry for stable Hall states

De Martino, A. & Musto, R (1995). Knizhnik-Zamolodchikov equation and extended symmetry for stable Hall states. Modern Physics Letters A (mpla), 2051, doi: 10.1142/S0217732395002209

[img]
Preview
PDF
Download (121kB) | Preview

Abstract

We describe a $n$ component abelian Hall fluid as a system of {\it composite bosons} moving in an average null field given by the external magnetic field and by the statistical flux tubes located at the position of the particles. The collective vacuum state, in which the bosons condense, is characterized by a Knizhnik-Zamolodchikov differential equation relative to a $\hat {U}(1)^n$ Wess-Zumino model. In the case of states belonging to Jain's sequences the Knizhnik-Zamolodchikov equation naturally leads to the presence of an $\hat{U}(1)\ot \hat{SU}(n)$ extended algebra. Only the $\hat{U}(1)$ mode is charged while the $\hat{SU}(n)$ modes are neutral, in agreement with recent results obtained in the study of the edge states.

Item Type: Article
Additional Information: 11 pages, Latex
Subjects: Q Science > QC Physics
Divisions: School of Engineering & Mathematical Sciences > Department of Mathematical Science
Related URLs:
URI: http://openaccess.city.ac.uk/id/eprint/1681

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics