Clustering Trajectories by Relevant Parts for Air Traffic Analysis

Andrienko, G., Andrienko, N., Fuchs, G. & Cordero Garcia, J. M. (2017). Clustering Trajectories by Relevant Parts for Air Traffic Analysis. IEEE Transactions on Visualization and Computer Graphics, doi: 10.1109/TVCG.2017.2744322

[img]
Preview
Text - Accepted Version
Download (767kB) | Preview

Abstract

Clustering of trajectories of moving objects by similarity is an important technique in movement analysis. Existing distance functions assess the similarity between trajectories based on properties of the trajectory points or segments. The properties may include the spatial positions, times, and thematic attributes. There may be a need to focus the analysis on certain parts of trajectories, i.e., points and segments that have particular properties. According to the analysis focus, the analyst may need to cluster trajectories by similarity of their relevant parts only. Throughout the analysis process, the focus may change, and different parts of trajectories may become relevant. We propose an analytical workflow in which interactive filtering tools are used to attach relevance flags to elements of trajectories, clustering is done using a distance function that ignores irrelevant elements, and the resulting clusters are summarized for further analysis. We demonstrate how this workflow can be useful for different analysis tasks in three case studies with real data from the domain of air traffic. We propose a suite of generic techniques and visualization guidelines to support movement data analysis by means of relevance-aware trajectory clustering.

Item Type: Article
Additional Information: (c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
T Technology > TL Motor vehicles. Aeronautics. Astronautics
Divisions: School of Informatics > Department of Computing
URI: http://openaccess.city.ac.uk/id/eprint/18119

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics