Working-Fluid replacement in supersonic organic Rankine Cycle Turbines

White, M., Markides, C. & Sayma, A. I. (2017). Working-Fluid replacement in supersonic organic Rankine Cycle Turbines. Journal of Engineering for Gas Turbines and Power,

[img] Text - Accepted Version
Restricted to Repository staff only

Download (4MB)

Abstract

In this paper the effect of working-fluid replacement within an organic Rankine cycle turbine is investigated by evaluating the performance of two supersonic stators operating with different working fluids. After designing the two stators, intended for operation with R245fa and Toluene with stator exit absolute Mach numbers of 1.4 and 1.7 respectively, the performance of each stator is evaluated using ANSYS CFX. Based on the principle that the design of a given stator is dependent on the amount of flow turning, it is hypothesised that a stator’s design point can be scaled to alternative working fluids by conserving the Prandtl-Meyer function and the polytropic index within the nozzle. A scaling method is developed and further CFD simulations for the scaled operating points verify that the Mach number distributions within the stator, and the non-dimensional velocity triangles at the stator exit, remain unchanged. This confirms that the method developed can predict stator performance following a change in the working fluid. Finally, a study investigating the effect of working-fluid replacement on the thermodynamic cycle is completed. The results show that the same turbine could be used in different systems with power outputs varying between 17 and 112 kW, suggesting the potential of matching the same turbine to multiple heat sources by tailoring the working fluid selected. This further implies that the same turbine design could be deployed in different applications, thus leading to economy-of-scale improvements.

Item Type: Article
Divisions: School of Engineering & Mathematical Sciences > Engineering
URI: http://openaccess.city.ac.uk/id/eprint/18431

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics