Determination of Design of Optimal Actuator Location Based on Control Energy

Farshad Mehr, A. (2018). Determination of Design of Optimal Actuator Location Based on Control Energy. (Unpublished Doctoral thesis, City, University of London)

Text - Accepted Version
Download (11MB) | Preview


The thesis deals with the selection of the sets of inputs and outputs using the energy properties of the controllability and observability of a system and aims to define input and output structures which require minimization of the energy for control and state reconstruction. Such a study explores the energy dimension of the properties of controllability and observability, develops computations for the controllability and observability Gramians for stable and unstable systems and examines measures of the degree of controllability and observability properties using SVD (Singular Value Decomposition) of Gramians to compute the maximal and minimal energy requirements. These characterize the relative degree of controllability and observability under conditions where the available energy is constrained. The notion of energy surfaces in the state space is introduced and this enables the characterization of restricted notions of controllability and observability when the available energy is bounded. The maximal and minimal energy requirements for different input vectors is demonstrated and this provides the basis for the development of strategies and methodologies for selection of systems of inputs and outputs to minimize the energy required for control, respectively state reconstruction. These results enable the development of input, output structure selection methodology using a novel optimization method. This thesis contributes in the further development of the area of systems, or global instrumentation, developed so far based on the assignment of structural characteristics by incorporating the role of energy requirements. The research provides energy based tools for the selection of input and outputs schemes with a main criterion the minimization of the energy required for control and observation and thus provide an alternative approach based on quantitative system properties in characterizing control and state observation as functions of given sets of inputs and output sets. The methodologies developed may be used as design tools where apart from energy requirements other design criteria may be also incorporated for the selection of inputs and outputs. The methodology that is used is based on linear systems theory and tools from numerical linear algebra. The solution to the problems considered here is an integral part of the effort to develop an integrated approach to control and global process instrumentation.

Item Type: Thesis (Doctoral)
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Divisions: City, University of London theses
School of Engineering & Mathematical Sciences > Engineering
City, University of London theses > School of Mathematics, Computer Science and Engineering theses

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics