Number of items: **9**.

## Article

Tamanna, N., Crouch, R.S., Kabir, I. R. & Naher, S. (2018).
An Analytical Model to Predict and Minimize the Residual Stress of Laser Cladding Process.
*Applied Physics A: Materials Science & Processing*,
doi: 10.1007/s00339-018-1585-6

Wilson, D.T., Hawe, G.I., Coates, G. & Crouch, R.S. (2016).
Online optimization of casualty processing in major incident response: An experimental analysis.
*European Journal of Operational Research*, 252(1),
pp. 334-348.
doi: 10.1016/j.ejor.2016.01.021

Wilson, D.T., Hawe, G.I., Coates, G. & Crouch, R.S. (2014).
Evaluation of centralised and autonomous routing strategies in major incident response.
*Safety Science*, 70,
pp. 80-88.
doi: 10.1016/j.ssci.2014.05.001

Wilson, D.T., Hawe, G.I., Coates, G. & Crouch, R.S. (2013).
A multi-objective combinatorial model of casualty processing in major incident response.
*European Journal of Operational Research*, 230(3),
pp. 643-655.
doi: 10.1016/j.ejor.2013.04.040

Coombs, W.M., Crouch, R.S. & Augarde, C.E. (2013).
A unique Critical State two-surface hyperplasticity model for fine-grained particulate media.
*Journal of the Mechanics and Physics of Solids*, 61(1),
pp. 175-189.
doi: 10.1016/j.jmps.2012.08.002

Hawe, G.I., Coates, G., Wilson, D.T. & Crouch, R.S. (2012).
Agent-based simulation for large-scale emergency response: A survey of usage and implementation.
*ACM Computing Surveys*, 45(1),
doi: 10.1145/2379776.2379784

Coombs, W.M. & Crouch, R.S. (2011).
Algorithmic issues for three-invariant hyperplastic Critical State models.
*Computer Methods in Applied Mechanics and Engineering*, 200(25-28),
pp. 2297-2318.
doi: 10.1016/j.cma.2011.03.019

Coombs, W.M. & Crouch, R.S. (2011).
Non-associated Reuleaux plasticity: Analytical stress integration and consistent tangent for finite deformation mechanics.
*Computer Methods in Applied Mechanics and Engineering*, 200(9-12),
pp. 1021-1037.
doi: 10.1016/j.cma.2010.11.012

Coombs, W.M., Crouch, R.S. & Augarde, C.E. (2010).
Reuleaux plasticity: Analytical backward Euler stress integration and consistent tangent.
*Computer Methods in Applied Mechanics and Engineering*, 199(25-28),
pp. 1733-1743.
doi: 10.1016/j.cma.2010.01.017

This list was generated on **Fri Feb 23 06:17:30 2018 UTC**.