Up a level |

Group by: Publication Type | No Grouping

Jump to: Article

Number of items: **11**.

Dey, S., Fring, A. and Hussin, V. (2017).
Nonclassicality versus entanglement in a noncommutative space.
*International Journal of Modern Physics B*, 31(1),
1650248..
doi: 10.1142/S0217979216502489

Fring, A., Dey, S. and Gouba, L. (2015).
Milne quantization for non-Hermitian systems.
*Journal of Physics A: Mathematical and Theoretical*, 48,
p. 40.
doi: 10.1088/1751-8113/48/40/40FT01

Dey, S., Fring, A. and Mathanaranjan, T. (2014).
Spontaneous PT-Symmetry Breaking for Systems of Noncommutative Euclidean Lie Algebraic Type.
*International Journal of Theoretical Physics*, 54(11),
pp. 4027-4033.
doi: 10.1007/s10773-014-2447-4

Fring, A. and Dey, S. (2014).
Noncommutative quantum mechanics in a time-dependent background.
*Physical Review D - Particles, Fields, Gravitation and Cosmology*, 90,
084005 -084019.
doi: 10.1103/PhysRevD.90.084005

Dey, S., Fring, A. and Mathanaranjan, T. (2014).
Non-Hermitian systems of Euclidean Lie algebraic type with real energy spectra.
*Annals of Physics*, 346,
pp. 28-41.
doi: 10.1016/j.aop.2014.04.002

Dey, S. and Fring, A. (2013).
Bohmian quantum trajectories from coherent states.
*Physical Review A (PRA)*, 88(022116),
-.
doi: 10.1103/PhysRevA.88.022116

Dey, S., Fring, A. and Khantoul, B. (2013).
Hermitian versus non-Hermitian representations for minimal length uncertainty relations.
*Journal of Physics A: Mathematical and Theoretical*, 46(33),
doi: 10.1088/1751-8113/46/33/335304

Fring, A., Dey, S., Gouba, L. and Castro, P. G. (2013).
Time-dependent q-deformed coherent states for generalized uncertainty relations.
*Physical Review D: Particles, Fields, Gravitation and Cosmology*, 87(8),
doi: 10.1103/PhysRevD.87.084033

Fring, A. and Dey, S. (2013).
The Two-dimensional Harmonic Oscillator on a Noncommutative Space with Minimal Uncertainties.
*Acta Polytechnica*, 2013(3),
pp. 268-276.

Dey, S., Fring, A. and Gouba, L. (2012).
PT-symmetric non-commutative spaces with minimal volume uncertainty relations.
*Journal of Physics A: Mathematical and Theoretical*, 45(38),
doi: 10.1088/1751-8113/45/38/385302

Dey, S. and Fring, A. (2012).
Squeezed coherent states for noncommutative spaces with minimal length uncertainty relations.
*Physical Review D - Particles, Fields, Gravitation and Cosmology*, 86(6),
doi: 10.1103/PhysRevD.86.064038