Impact of wall temperature on turbine blade tip aerothermal performance

Zhang, Q. & He, L. (2014). Impact of wall temperature on turbine blade tip aerothermal performance. Journal of Engineering for Gas Turbines and Power, 136(5), 052602. doi: 10.1115/1.4026001

[img] Text - Accepted Version
Restricted to Repository staff only

Download (4MB)


Currently the aerodynamics and heat transfer over a turbine blade tip tend to be analyzed separately with the assumption that the wall thermal boundary conditions do not affect the over-tip-leakage (OTL) flow field. There are some existing correlations for correcting the wall temperature effect on heat transfer when scaled to engine realistic conditions. But they were either developed to account for the temperature dependence of fluid properties largely empirically, or based on a boundary-layer model. It would be difficult (if not impossible) to define a boundary layer in many parts of a realistic blade passage with marked three-dimensional (3D) end wall and secondary flows (including those within a blade tip and around it). The questions to be asked here are: is the OTL aerodynamics significantly affected by the wall thermal condition? And if it is, how can we count this effect consistently in turbine blade tip design and analysis using modern CFD methods? In the present study the problem has been examined for typical high-pressure turbine blade tip configurations. An extensively developed RANS code (HYDRA) is employed and validated against the experimental data from a high speed linear cascade testing rig. The numerical analysis reveals that the wall-gas temperature ratio could greatly affect the transonic OTL flow field and there is a strong two-way coupling between aerodynamics and heat transfer. The feedbacks of the thermal boundary condition to aerodynamics behave differently at different flow regimes over the tip, clearly indicating a highly localized dependence of the convective heat transfer coefficient (HTC) upon wall temperatures. This implies that to use HTC for blade metal temperature predictions without resorting a fully conjugate solution, the temperature dependence needs to be corrected locally. A nonlinear correction approach has been adopted in the present work, and the results demonstrate its effectiveness for the transonic turbine tip configurations studied.

Item Type: Article
Subjects: T Technology > TL Motor vehicles. Aeronautics. Astronautics
Divisions: School of Engineering & Mathematical Sciences > Engineering

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics