City Research Online

Items where Subject is "H Social Sciences > HA Statistics"

Up a level
Export as [feed] RSS 2.0 [feed] RSS
Group by: Authors | Publication Type
Jump to: A | B | C | D | F | G | H | K | L | M | N | O | P | R | S | T | V | Y
Number of items at this level: 79.

A

Ahmadi, R. (2011). Stochastic modelling and maintenance optimization of systems subject to deterioration. (Unpublished Doctoral thesis, City University London)

Andersson, Neil (2013). Uncertainties in gender violence epidemiology. (Unpublished Doctoral thesis, City University London)

Asimit, A.V., Bignozzi, V., Cheung, K. C., Hu, J. & Kim, E. (2017). Robust and Pareto Optimality of Insurance Contract. European Journal of Operational Research, 262(2), pp. 720-732. doi: 10.1016/j.ejor.2017.04.029

Asimit, A.V. & Li, J. (2017). Systemic Risk: An Asymptotic Evaluation. .

B

Beecham, R., Slingsby, A., Brunsdon, C. & Radburn, R. (2017). Spatially varying explanations behind the UKs vote to leave the EU. Paper presented at the 25th Geographical Information Science (GIS) Research UK Conference, 18 Apr 2017 - 21 Apr 2017, Manchester, UK.

Biais, B., Mariotti, T., Rochet, J.C. & Villeneuve, S. (2010). Large risks, limited liability, and dynamic moral hazard. Econometrica, 78(1), pp. 73-118. doi: 10.3982/ECTA7261

Blake, D., Courbage, C., MacMinn, R. & Sherris, M. (2011). Longevity Risk and Capital Markets: The 2010-2011 Update. The Geneva Papers On Risk And Insurance: Issues And Practice, 36(4), doi: 10.1057/gpp.2011.27

Blake, D. & Hunt, A. (2016). Basis Risk and Pension Schemes: A Relative Modelling Approach (Report No. PI-1601). London, UK: Pensions Institute.

Boyko, V., Dubrovina, N., Zamyatin, P., Gerrard, R. J. G., Savvi, S., Lazirskiy, V., Ghydetskyy, V., Sinelnikov, A., Zamiatin, D., Kolesnikova, O. & Shaprynskyy, E. (2015). Epidemiology and Forecast of the Prevalence of Esophageal Cancer in the Countries of Central and Eastern Europe. Procedia Economics and Finance, 24, pp. 93-100. doi: 10.1016/S2212-5671(15)00622-X

Broom, M., Borries, C. & Koenig, A. (2004). Infanticide and infant defence by males--modelling the conditions in primate multi-male groups. Journal of Theoretical Biology, 231(2), pp. 261-270. doi: 10.1016/j.jtbi.2004.07.001

Broom, M., Cannings, C. & Vickers, G. T. (2000). Evolution in Knockout Contests: the Variable Strategy Case. Selection, 1, pp. 5-21.

Broom, M., Crowe, M. L., Fitzgerald, M. R. & Rychtar, J. (2010). The stochastic modelling of kleptoparasitism using a Markov process. Journal of Theoretical Biology, 264(2), pp. 266-272. doi: 10.1016/j.jtbi.2010.01.012

Broom, M., Hadjichrysanthou, C. & Rychtar, J. (2010). Evolutionary games on graphs and the speed of the evolutionary process. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2117), pp. 1327-1346. doi: 10.1098/rspa.2009.0487

Broom, M., Hadjichrysanthou, C., Rychtar, J. & Stadler, B. T. (2010). Two results on evolutionary processes on general non-directed graphs. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2121), pp. 2795-2798. doi: 10.1098/rspa.2010.0067

Broom, M. & Ruxton, G. D. (2004). A framework for modelling and analysing conspecific brood parasitism. Journal of Mathematical Biology, 48(5), pp. 529-544. doi: 10.1007/s00285-003-0244-4

Broom, M. & Rychtar, J. (2011). Kleptoparasitic melees--modelling food stealing featuring contests with multiple individuals.. Bulletin of Mathematical Biology, 73(3), pp. 683-699. doi: 10.1007/s11538-010-9546-z

Broom, M. & Rychtar, J. (2008). An analysis of the fixation probability of a mutant on special classes of non-directed graphs. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 464(2098), pp. 2609-2627. doi: 10.1098/rspa.2008.0058

Broom, M., Rychtar, J. & Stadler, B. (2009). Evolutionary Dynamics on Small-Order Graphs. Journal of Interdisciplinary Mathematics, 12, pp. 129-140.

Broom, M., Rychtar, J. & Sykes, C. (2008). The Evolution of Kleptoparasitism under Adaptive Dynamics Without Restriction. Journal of Interdisciplinary Mathematics, 11(4), pp. 479-494.

Broom, M., Speed, M. P. & Ruxton, G. D. (2005). Evolutionarily stable investment in secondary defences. Functional Ecology, 19(5), pp. 836-843. doi: 10.1111/j.1365-2435.2005.01030.x

C

Chawsheen, T.A. & Broom, M. (2017). Seasonal time-series modeling and forecasting of monthly mean temperature for decision making in the Kurdistan Region of Iraq. Journal of Statistical Theory and Practice, doi: 10.1080/15598608.2017.1292484

Ciulla, F., Mocanu, D., Baronchelli, A., Gonçalves, B., Perra, N. & Vespignani, A. (2012). Beating the news using social media: the case study of American Idol. EPJ Data Science, 1(8), doi: 10.1140/epjds8

Cooper, C., Levay, P., Lorenc, T. & Craig, G. M. (2014). A population search filter for hard-to-reach populations increased search efficiency for a systematic review. Journal of Clinical Epidemiology, 67(5), pp. 554-559. doi: 10.1016/j.jclinepi.2013.12.006

Corte, P. D., Sarno, L. & Thornton, D. (2008). The Expectation Hypothesis of the Term Structure of Very Short-Term Rates: Statistical Tests and Economic Value. Journal of Financial Economics, 89(1), pp. 158-174. doi: 10.1016/j.jfineco.2007.08.002

Cowell, R. & Smith, J.Q. (2014). Causal discovery through MAP selection of stratified chain event graphs. Electronic Journal of Statistics, 8(1), pp. 965-997. doi: 10.1214/14-E4S917

D

D'Amato, V., Haberman, S. & Piscopo, G. (2017). The dependency premium based on a multifactor model for dependent mortality data. Communications in Statistics - Theory and Methods, doi: 10.1080/03610926.2017.1366523

Dagg, R.A. (1999). Optimal inspection and maintenance for stochastically deteriorating systems. (Unpublished Doctoral thesis, City University London)

Dash, J., Lankester, T., Hubbard, S. & Curran, P. J. (2008). Signal-to-noise ratio for MTCI and NDVI time series data. Proceedings of the 2nd MERIS/(A)ATSR User Workshop,

Datta-Nemdharry, P., Dattani, N. & Macfarlane, A. J. (2012). Linking maternity data for Wales, 2005-07: methods and data quality. Health Statistics Quarterly, 54, pp. 1-24.

Dattani, N., Datta-Nemdharry, P. & Macfarlane, A. J. (2012). Linking maternity data for England 2007: methods and data quality. Health Statistics Quarterly, 53, pp. 4-21.

Della Corte, P., Sarno, L. & Thornton, D. L. (2007). The Expectation Hypothesis of the Term Structure of Very Short-Term Rates: Statistical Tests and Economic Value (Report No. 6445). Centre for Economic Policy Research.

Dimitrova, D. S., Ignatov, Z. G. & Kaishev, V. K. (2017). On the First Crossing of Two Boundaries by an Order Statistics Risk Process. Risks, 5(3), 43.. doi: 10.3390/risks5030043

Dimitrova, D. S., Kaishev, V. K. & Haberman, S. (2014). Research Excellence Framework (REF).

F

Fitzgerald, R., Widdop, S., Gray, M. & Collins, D. (2011). Identifying sources of error in cross-national questionnaires: Application of an error source typology to cognitive interview data. Journal of Official Statistics, 27(4), pp. 569-599.

Fujiki, M.H. (1994). Pension fund valuation. (Unpublished Doctoral thesis, City University London)

Fusai, G. (2000). Corridor options and arc-sine law. ANNALS OF APPLIED PROBABILITY, 10(2), pp. 634-663.

G

Gandrud, C. (2015). simPH: An R package for illustrating estimates from cox proportional hazard models including for interactive and nonlinear effects. Journal of Statistical Software, 65(3), doi: 10.18637/jss.v065.i03

Gonzalez-Manteiga, W, Borrajo, MI & Martinez-Miranda, M. D. (2017). Bandwidth selection for kernel density estimation with length-biased data. Journal of Nonparametric Statistics, 29(3), pp. 636-668. doi: 10.1080/10485252.2017.1339309

González-Manteiga, W., Martinez-Miranda, M. D. & Van Keilegom, I. (2016). Goodness-of-fit test in parametric mixed effects models based on estimation of the error distribution. Biometrika, 103(1), pp. 133-146. doi: 10.1093/biomet/asv061

H

Haberman, S., Ntamjokouen, A. & Consigli, G. (2017). Projecting the long run relationship of multi-population life expectancy by race. Journal of Statistical and Econometric Methods, 6(2), pp. 43-68.

Harper, G. (2017). A study of the use of linked routinely collected administrative data at the local level to count and profile populations. (Unpublished Doctoral thesis, City, University of London)

Harper, G. & Mayhew, L. (2012). Applications of Population Counts Based on Administrative Data at Local Level. Applied Spatial Analysis and Policy, 5(3), pp. 183-209. doi: 10.1007/s12061-011-9062-z

Harper, G. & Mayhew, L. (2012). Using Administrative Data to Count Local Populations. Applied Spatial Analysis and Policy, 5(2), pp. 97-122. doi: 10.1007/s12061-011-9063-y

Harper, G. & Mayhew, L. (2016). Using Administrative Data to Count and Classify Households with Local Applications. Applied Spatial Analysis and Policy, 9(4), pp. 433-462. doi: 10.1007/s12061-015-9162-2

Harrison, M. D. & Broom, M. (2009). A game-theoretic model of interspecific brood parasitism with sequential decisions. Journal of Theoretical Biology, 256(4), pp. 504-517. doi: 10.1016/j.jtbi.2008.08.033

Hatzopoulos, P. & Haberman, S. (2013). Common mortality modeling and coherent forecasts. An empirical analysis of worldwide mortality data. Insurance: Mathematics and Economics, 52(2), pp. 320-337. doi: 10.1016/j.insmatheco.2012.12.009

Hiabu, M. (2016). On the relationship between classical chain ladder and granular reserving. Scandinavian Actuarial Journal, 2017(8), pp. 708-729. doi: 10.1080/03461238.2016.1240709

Hiabu, Munir (2016). In-sample forecasting: structured models and reserving. (Unpublished Doctoral thesis, City, University of London)

K

Kaiksow, W.A. (1999). Labour supply problems and solutions: econometric model for the State of Bahrain. (Unpublished Doctoral thesis, City University London)

Kaishev, V. K., Dimitrova, D. S., Haberman, S. & Verrall, R. J. (2006). Geometrically Designed, Variable Knot Regression Splines: Asymptotics and Inference (Report No. Statistical Research Paper No. 28). Cass Business School, City University, London.

Kuha, J., Butt, S., Katsikatsou, M. & Skinner, C. (2017). The Effect of Probing "Don't Know" Responses on Measurement Quality and Nonresponse in Surveys. Journal of the American Statistical Association,

L

Lee, Y. K., Mammen, E., Nielsen, J. P. & Park, B. P. (2018). In-sample forecasting: A brief review and new algorithms. ALEA - Latin American Journal of Probability and Mathematical Statistics, 15, pp. 875-895.

Li, F., Rahulamathavan, Y., Conti, M. & Rajarajan, M. (2015). Robust access control framework for mobile cloud computing network. Computer Communications, 68(Sept), pp. 61-72. doi: 10.1016/j.comcom.2015.07.005

Loreto, V., Baronchelli, A., Mukherjee, A., Puglisi, A. & Tria, F. (2011). Statistical physics of language dynamics. Journal of Statistical Mechanics: Theory and Experiment, 2011(4), P04006. doi: 10.1088/1742-5468/2011/04/P04006

Low, N., Butt, S., Ellis, P. & Davis Smith, J. (2007). Helping out: a national survey of volunteering and charitable giving. London: Cabinet Office.

Luciano, E., Spreeuw, J. & Vigna, E. (2008). Modelling stochastic mortality for dependent lives. Insurance: Mathematics and Economics, 43(2), pp. 234-244. doi: 10.1016/j.insmatheco.2008.06.005

López-Montoya, A.J., Gámiz-Pérez, M.L. & Martinez-Miranda, M. D. (2015). Local linear smoothing to estimate accelerated lifetime model with censoring and truncation. Applied Mathematical Modelling, 39(16), doi: 10.1016/j.apm.2015.03.063

M

MacFarlane, A., Dorkenoo, E. & Morison, L. (2007). A statistical study to estimate the prevalence of female genital mutilation in England and Wales. Summary Report. London: Foundation for Women's Health, Research and Development (FORWARD).

Martinez-Miranda, M. D., Nielsen, J. P., Verrall, R. J. & Wüthrich, M. V. (2015). Double chain ladder, claims development inflation and zero-claims. Scandinavian Actuarial Journal, 2015(5), pp. 383-405. doi: 10.1080/03461238.2013.823459

Mayhew, L. (2000). Health and Elderly Care Expenditure in an Aging World (Report No. RR-00-21). International Institute for Applied Systems Analysis (IIASA).

Mayhew, L. (2001). Japan's Longevity Revolution and the Implications for Health Care Finance and Long-term Care (Interim Report) (Report No. IR-01-010/February). International Institute for Applied Systems Analysis (IIASA).

Mayhew, L. & Smith, D. (2016). Decomposition of Life Expectancy at Older Ages and Prospects for Ageing Populations. In: J. Lombard, E. Stern & G. Clarke (Eds.), Applied Spatial Modelling and Planning. (pp. 172-188). Routledge. ISBN 9781138925700

Mayhew, L. & Smith, D. (2015). A jam-jar model of life expectancy and limits to life. International Longevity Centre - UK (ILC-UK).

Munir, H., Mammen, E., Martinez-Miranda, M. D. & Nielsen, J. P. (2016). In-Sample Forecasting with Local Linear Survival Densities. Biometrika, 101(4), pp. 843-859. doi: 10.1093/biomet/asw038

N

Nielsen, J. P., Agbeko, T., Miranda, M. D. M. & Verrall, R. J. (2014). Validating the double chain ladder stochastic claims reserving model. Variance: advancing the science of risk, 8(2), pp. 138-160.

O

O'Connor, R.B. (1996). The applicability of statistical techniques to credit portfolios with specific reference to the use of risk theory in banking. (Unpublished Doctoral thesis, City University London)

Owadally, I. & Landsman, Z. (2013). A characterization of optimal portfolios under the tail mean-variance criterion. Insurance: Mathematics and Economics, 52(2), pp. 213-221. doi: 10.1016/j.insmatheco.2012.12.004

P

Popov, P. T. (2013). Bayesian reliability assessment of legacy safety-critical systems upgraded with fault-tolerant off-the-shelf software. Reliability Engineering & System Safety, 117(Sept), pp. 98-113. doi: 10.1016/j.ress.2013.03.017

R

Ruxton, G. D., Fraser, C. & Broom, M. (2005). An evolutionarily stable joining policy for group foragers. Behavioral Ecology, 16(5), pp. 856-864. doi: 10.1093/beheco/ari063

S

Sekhon, M. (2017). Acceptability of healthcare interventions. (Unpublished Doctoral thesis, City, Universtiy of London)

Seng Tang, K., Blake, D. & MacMinn, R. (2015). Longevity Risk and Capital Markets: The 2013-14 Update (Report No. PI-1502). London, UK: Pensions Institute.

Shang, H.L. & Haberman, S. (2017). Grouped multivariate and functional time series forecasting: an application to annuity pricing. Insurance: Mathematics and Economics, 75, pp. 166-179. doi: 10.1016/j.insmatheco.2017.05.007

Slingsby, A., Dykes, J. & Wood, J. (2011). Exploring Uncertainty in Geodemographics with Interactive Graphics. IEEE Transactions on Visualization and Computer Graphics, 17(12), pp. 2545-2554. doi: 10.1109/TVCG.2011.197

Slingsby, A., Dykes, J., Wood, J., Foote, M. & Blom, M. (2008). The Visual Exploration of Insurance Data in Google Earth. Paper presented at the GISRUK08, 2 - 4 Apr 2008, Manchester Metropolitan University, Manchester, UK.

Spreeuw, J. (2010). Relationships Between Archimedean Copulas and Morgenstern Utility Functions. Paper presented at the Copula Theory and Its Applications, 25-26 September 2009, Warsaw.

T

Tsanakas, A. (2012). Modelling: The elephant in the room. The Actuary, 2012,

Tsanakas, A., Beck, M. B. & Thompson, M. (2016). Taming Uncertainty: The Limits to Quantification. Astin Bulletin: The Journal of the ASTIN and AFIR Sections of the International Actuarial Association, 46(1), pp. 1-7.

V

Verrall, R. J. (1989). Stochastic Models for Triangular Tables with Applications to Cohort Data and Claims Reserving. (Unpublished Doctoral thesis, City University London)

Y

Yates, G. E. & Broom, M. (2007). Stochastic models of kleptoparasitism. Journal of Theoretical Biology, 248(3), pp. 480-489. doi: 10.1016/j.jtbi.2007.05.007

This list was generated on Sun Aug 19 04:20:42 2018 UTC.